作者 通讯作者
基因组学与应用生物学, 2011 年, 第 30 卷, 第 1 篇 doi: 10.5376/gab.cn.2011.30.0001
收稿日期: 2010年10月27日 接受日期: 2010年12月17日 发表日期: 2011年01月11日
引用格式(中文):
陈靖等, 2011,基因枪轰击法和农杆菌介导在玉米遗传转化中的应用,基因组学与应用生物学(online), Vol.30 No.1 pp.1001-1006 (doi: 10.5376/gab.cn.2011.30.0001)
引用格式(英文):
Chen et al., 2011, Application of genetic transformation in maize by particle bombardment and Agrobacterium-Mediated method, Jiyinzuxue Yu Yingyong Shengwuxue (Genomics and Applied Biology), Vol.30 No.1 pp.1001-1006 (doi: 10.5376/gab.cn.2011.30.0001)
许多转基因技术都能成功地实现玉米的遗传转化,而基因枪轰击法和农杆菌介导的玉米遗传转化是目前植物基因转化的两大系统。本文主要就这两种方法在玉米遗传转化的研究现状以及其几种常用的外植体(如胚性愈伤组织, 幼胚, 茎尖分生组织)进行了综述,最后还对这些遗传转化方法的进一步研究和应用进行了展望,以期能培育出玉米转基因新品种,同时本文将为玉米遗传转化深入研究提供理论基础。
玉米(Zea mays L)是重要的粮食作物和饲料作物,在国民生产中发挥着举足轻重的作用。近年来,玉米使用途径的多样化推动了对该作物的遗传改良(Johnson, 2000)。除了通过常规育种对玉米进行遗传改良外,现在常用遗传转化方法来改良玉米。
应用转基因技术技术已经在几个重点领域取得可喜成果,如对玉米螟和除草剂的抗性及玉米品质的改良提高等。Fromm等(1986)将抗除草剂PAT (phosphinothricin acetyltransferase)基因转入玉米原生质体,开创了玉米遗传转化研究的先河;Klein等(1989)首次报道得到再生转基因玉米植株。此后,许多实验室应用电击法(Pescitelli and Sukhapinda, 1995)、PEG介导法(Wang et al., 2000)、碳化硅晶须(Frame et al., 1994; Petolino et al., 2000)和定点打靶(Shukla et al., 2009)等多种方法成功地对玉米实现遗传转化。但基因枪法和农杆菌介导法是目前用于玉米遗传转化的两大植物基因转化系统。早期玉米转化多采用基因枪轰击法,主要因为该法具有可重复、转化效率高和可对多种受体进行转化等优点(Ahmadabadi et al., 2007; Prakash et al., 2009),但是也存在费用高、遗传不稳定和多拷贝等缺点。相比之下,根癌农杆菌介导的转化具有操作简单、成本低、单拷贝和可转移大片段DNA等优点(Shou et al., 2004)使其成为近年来的研究的热点。然而,成功的转化离不开良好的受体系统。本文围绕基因枪轰击法和农杆菌介导法这两种转化方法的发展历程及转化常用受体系统这两方面概述了近年来玉米遗传转化的许多新进展。
1基因枪轰击法应用于玉米遗传转化
1987年,一种新的高速微粒转化设备的发展开创了谷类转化的新纪元基因枪(Klein et al., 1987)。那时,农杆菌介导的转化还不成熟,并且理论上仅限于双子叶植物。基因枪是通过加速的微粒将表面包裹的DNA分子渗入植物组织细胞,克服了DNA不能穿透细胞壁的困难,也避免了去除细胞壁的必要,因此更多的器官及组织能被用来转化。基因枪的发明是玉米转化史上的一个转折点。Klein等(1989)用基因枪法将GUS (β-glucuronidase)和PAT基因转入玉米悬浮细胞系,首次获得转基因玉米。次年,Gordon-Kamm等(1990)用同样的方法将GUS和PAT基因导入玉米悬浮细胞系,并获得能结实的转基因玉米植株。Bt (Bacillus thuringiensis)玉米就是基因枪法的转基因产物,于1996年开始大规模商业化生产。
基因枪法是一种相对简单、有效、并能重复使用的转化方法,随着对物理参数、环境条件和生物因子进行优化,不断完善的基因枪转化技术能实现对多种外植体的转化,用BMS (black mexican sweet)细胞悬浮液(Klein et al., 1989),玉米愈伤悬浮培养(Fromm et al., 1990; Gordon-Kamm et al., 1990; Register et al., 1994),Ⅱ型愈伤(Pareddy and Petolino, 1997; Frame et al., 2000; Liu et al., 2009),Ⅰ型愈伤(Wan et al., 1995; Ahmadabadi et al., 2007),幼胚(Brettschneider et al., 1997; Frame et al., 2000; Prakash et al., 2009)等都已获得稳定转化。Brettschneider等(1997)在轰击预培养的H99幼胚时发现,将金粉用量减少4倍可以增加稳定转化效率。同样,将金粉直径从1.0 µm减少至0.6 µm也增加了HiⅡⅡ型愈伤稳定的转化效率(Frame et al., 2000)。Kausch等(1995)认为转化效率提高是因为减小了轰击时对靶细胞的伤害。Brettschneider等(1997)用基因枪转化H99产生的Ⅰ型愈伤时发现,将破裂膜压力从900 psi增加到(1 300 pai1, 000psi=ca.6.89 MPa)提高了稳定的转化效率。Hunold等(1994)用金粉或钨粉分别包裹CaMV35S-GUS基因或Actin-GUS基因转化BMS玉米细胞,比较GUS的短暂表达,发现使用金粉时表达率更高。除了物理参数,培养方法的改进也利于提高转化效率。Vain等(1993)在轰击前将胚性细胞悬浮系置于含0.2 mol/L山梨醇和0.2 mol/L甘露醇的培养基上处理4 h,发现轰击前的高渗处理可以减少细胞膨压使粒子对细胞的伤害最小化,轰击后进行相同的处理来帮助细胞恢复,在轰击前后都对靶组织处理的转化效率显著高于只处理一次或不处理。Dunder等(1995)用12%的蔗糖来增加培养基的渗透势也获得相似的效果。此外,在轰击前对幼胚预培养一段时间也增加了转化效率(Songstad et al., 1996)。
现在基因枪法已经应用比较成熟,成为许多实验室获得转基因作物的首选方法。国内的王国英等(1995, 中国科学B辑, 25(1): 71-78)、董云洲等(1999)、何锶洁等(1999)和刘大文等(2000)均使用该法获得转基因植株。近年来也取得一系列重要研究成果,余云周等(2003)用基因枪法将口蹄疫病毒的抗原结构蛋白P1转入玉米,有望获得转基因植物疫苗。张红伟等(2004)也通过该法得到高抗玉米螟的转基因株系。刘小红等(2005)也得到抗玉米矮花叶病的转基因玉米。目前基因枪法已成为简单、快速获得转基因植株的成熟方法,多数商业化的转基因玉米都通过该法获得。
2农杆菌介导的玉米遗传转化
当研究者们证明基因枪的外力可以有效地将外源DNA转入植物细胞时,一种新的可替代方法发展起来了,即农杆菌转化法。过去,人们认为根癌农杆菌的天然宿主是双子叶植物而非单子叶植物,农杆菌作为植物稳定转化的载体仅限于双子叶植物。Grimsley等(1986)首次证明了农杆菌能够介导玉米转化。后来,Gould等(1991)用含有GUS和NPTⅡ (neomycin phosphotransferase)基因的农杆菌侵染玉米茎尖组织,获得转基因植株及后代。直到Ishida等(1996)用农杆菌转化法得到稳定的转基因植株,并对转化过程中的各种因素进行优化,例如选择感染性强的菌株(如EHA101和LBA4404),在共培养培养基中添加乙酰丁香酮,用于补充单子叶植物缺乏的用于诱导Vir基因表达的酚类物质,侵染所用培养基pH值以5.2为宜,选用较高的渗透压等。获得5%~30%的转化率,成为农杆菌转化玉米史上的标志性试验。
Ishida等(1996)的研究促进了后人对农杆菌转化单子叶植物的研究,有利于进一步深入研究农杆菌转化玉米的分子机理及影响因素,促进了农杆菌转化玉米技术的研究及提高。Zhao等(2001)用带超级双元载体的农杆菌LBA4404转化HiⅡ幼胚,对转化条件和培养基进行优化,将转化率提高到32.8%~50.5%。Frame等(2002)在此基础上用带普通双元载体的农杆菌EHA101转化HiⅡ幼胚,发现在共培养培养基中添加400 mg/L半胱氨酸可提高平均转化率,但幼胚产生愈伤的能力下降。在农杆菌转化A188幼胚时发现对幼胚预处理(水浴和离心)也能提高转化率(Hiei et al., 2006; Ishida et al., 2007)。但这些高效转化成功的报道多局限于A188 、HiⅡ及其它相近种质的幼胚中。近年来,在其它一些非模式基因型如Qi319 (Huang and Wei, 2005; Zhang et al., 2005)、Dh4866 (Quan et al., 2004)、B104、B114和Ky21 (Frame et al., 2006)中也获得过成功。受体也扩大到幼胚、芽尖、幼苗中胚轴等诱导出的愈伤组织(Kim et al., 2009; Sairam et al., 2003; Sidorov et al., 2006),但相关体系还需要重复验证和优化以提高转化率。
与其它转化方法相比,农杆菌转化法具有获得外源T-DNA整合模式相对简单、拷贝数低且能稳定遗传等优点(Shou et al., 2004; Zhang et al., 2005)。Oltmanns等(2010)将T-DNA重组到农杆菌染色体上,可以明显较少载体骨架的转移,从而获得更多整合模式简单、拷贝数低的转基因事件。但是农杆菌转化法是一个复杂过程,受到玉米基因型、农杆菌菌株、载体、培养环境等因素的影响,都可影响转化效率(Gelvin, 2003),因此农杆菌要想成为玉米遗传转化的首选方法,仍有很多问题需要解决。
3基因枪和农杆菌转化法常用的受体
无论是用基因枪法还是农杆菌法,玉米转化的成功离不开良好的受体系统。一个良好的受体首先能接受外源DNA,并将其稳定地整合进植物基因组;其次,转化细胞在适宜的选择压下能够增殖,从而与非转化细胞区别开来;最后,转化细胞能够通过培养得到可育植株,并将转入的基因遗传给后代。
目前用于基因枪和农杆菌转化常用的受体主要有以下几种。
3.1胚性愈伤组织
剥取授粉后10~14 d的幼胚,盾片朝上接种于含适宜生长素的培养基上,接种7~10 d后,盾片基部快速分裂的细胞将形成胚性愈伤组织(Fransz and Schel, 1990)。Chu等(1975)用高浓度的脯氨酸和N6盐培养玉米自交系A188的幼胚得到松碎、快速生长的胚性愈伤组织,命名为Ⅱ型愈伤。不同于之前所发现的结构致密的Ⅰ型愈伤。幼胚是获得胚性愈伤组织最常用的外植体,利用幼胚愈伤组织进行基因枪或农杆菌转化也是许多实验室的常规方法。然而幼胚的取材受到地理条件、季节等的严格限制。目前研究多集中在利用源于种子的外植体诱导愈伤组织进行转化。现在已能够从多种外植体中诱导出愈伤组织并初步进行转化,如成熟胚(Huang and Wei, 2004; Wang et al., 2000)、芽尖(Sairam et al., 2003)、中胚轴(Sidorov et al., 2006)和茎段(Ahmadabadi et al., 2007)等。但相对幼胚来说,这些再生及转化体系仍不成熟,还需要进行重复验证和优化工作。
3.2幼胚
Klein等(1988)最先用基因枪轰击玉米幼胚,在盾片细胞处观察到短暂的GUS基因表达。前人已经证明幼胚能够产生具有全能性的愈伤(Green and Phillips, 1975; Armstrong and Green, 1985),因此推断幼胚可能成为转化的主要的外植体。随着温室设备和生长室的发展普及,幼胚的取材逐渐不再受季节性的限制,成为基因枪或农杆菌转化的主要外植体。
幼胚转化体系已被广泛应用于玉米遗传转化中。Ishida等(1996)发现长度在1.0~2.0 mm的玉米幼胚最容易被农杆菌侵染。延长玉米愈伤组织的继代培养或转化后的抗性筛选,并不能显著提高转化效率,反而易产生无性系变异(Songstad et al., 1996)。而幼胚盾片具有很强的再生能力,可以使其通过短时间的愈伤化即可再生植株。如今,幼胚已经成为基因枪法(Frame et al., 2000; Prakash et al., 2009)或农杆菌介导法(Ishida et al., 2003; Zhao et al., 2001; Negrotto et al., 2000; Frame et al., 2002; Frame et al., 2006; Assen et al., 2009)的首选外植体。
3.3茎尖分生组织
许多玉米自交系的幼胚受到基因型的限制难以产生胚性愈伤,研究者们开始寻找其它具有再生能力的外植体。Coe and Sarkar (1966)首次尝试用玉米萌发种子的茎尖分生组织(SAM)进行遗传转化。但是茎尖转化易产生嵌合体,转入的基因难以稳定遗传给后代(Cao et al., 1990; Gould et al., 1991)。利用SAM进行转化一个重要的优势是不受基因型的限制。Li等(2002)研究了45个温带玉米自交系和杂交种,发现70%的品种能够进行SAM培养,O’Connor-Sanchez等(2002)选用的9个热带和亚热带玉米基因型也均能实现SAM培养Zhang等(2002)对顽拗型品种B73进行SAM培养,并用基因枪法实现转化(尽管低效)。Sairam等(2003)首次将SAM与农杆菌共培养,并从转基因R0植株中诱导出体细胞胚性愈伤组织或器官发生,但是没有得到转基因后代。Sidorov等(2006)从萌发种子的节点部位诱导出胚性愈伤,并与农杆菌共培养,达到稳定转化并得到转基因后代。Huang and Wei (2004)利用7个自交系的成熟胚产生胚性愈伤,但是没有进行转化。这也表明研究者们正在致力于寻找稳定有效的、不受基因型限制、具有再生能力的外植体进行转化。
4玉米遗传转化的展望
自从Klein等(1989)首次获得转基因玉米以来,玉米遗传转化已有了突破性进展。利用基因枪技术获得抗虫、抗除草剂的转基因玉米已经投入商业化生产,这些优良性状给社会带来巨大的环境和经济效益,推广种植面积逐年增加,现已发展为世界第二大商业化的转基因作物。农杆菌介导的转化技术随着研究的深入也越来越成熟。但也存在一些问题看,如利用基因枪法费用高,容易产生多拷贝植株等;农杆菌转化法存在基因型限制、转化效率低、转化体系不完善等问题,此外,像茎尖、分生组织等这些新的受体及与之相适应的再生与转化体系还在摸索阶段。今后应在转化方法上深入研究,优化玉米再生及转化体系,突破基因型限制,结合合适的转化方法,提高转化率。还要积极引进国外先进技术,培育转基因品种,努力开发具有独立知识产权的新基因,并且深入研究这些基因在玉米体内的表达调控机理,使其转入后高效专一表达并稳定遗传。
参考文献
Ahmadabadi M., Ruf S., and Bock R., 2007, A leaf-based regeneration and transformation system for maize (Zea mays L.), Transgenic Res., 16(4): 437-448 doi:10.1007/s11248-006-9046-y PMid:17103238
Armstrong C.L., and Green C.E., 1985, Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline, Planta, 164(2): 207-214 doi:10.1007/BF00396083
Assen S.K., Hussein E.H.A., Hussein H.A., and Basry M., 2009, Genetic transformation of the Nicotiana protein kinase (NPK1) gene confers osmotic tolerance in egyptian maize, Australian journal of basic and applied sciences, 3(2):828-835
Brettschneider R., Becker D., and Loerz H., 1997, Efficient transformation of scutellar tissue of immature maize embryos, Theor. Appl. Genet., 94: 737-748 doi:10.1007/s001220050473
Cao J., Wang Y.C., Klein T.M., Sanford J., and Wu R., 1990, Transformation of rice and maize using the biolistic process, In: Lamb C.J., and Beachy R.N. (eds.), Plant gene transfer, UCLA Symp, Mol. Cell Biol., vol.129, Wiley-Liss, New York, pp.21-33
Chu C.C., Wang C.C., Sun C.S., Hsu C., Yin K.C., Chu Y.C., and Bi F.Y., 1975, Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources, Sci. Sin., 18: 659-668
Coe E.H., and Sarkar K.R., 1966, Preparation of nucleic acids and a genetic transformation attempt in maize, Crop Set., 6: 432-435 doi:10.2135/cropsci1966.0011183X000600050012x
Dong Y.Z., Duan S.J., Zhao L.Y., Yang X.H., and Jia S.R., 1999, Production of transgenic millet and maize plants by particle bombardment, Zhongguo Nongye Kexue (Scientia Agriculture Sinica), 32(2): 9-13 (董云洲. 段胜军, 赵连元, 杨秀海, 贾世荣, 1999, 用基因枪转化花粉获得转基因谷子和玉米, 中国农业科学, 32(2): 9-13)
Dunder E., Dawson J., Suttie J., and Page G., 1995, Maize transformation by microprojectile bombardment of immature embryos, In: Potrykus I., and Spangenberg G. (eds.), Gene transfer to plants, Springer, Berlin Heidelberg, New York, pp.127-138
Frame B.R., Drayton P.R., Bagnall S.V., Lewnau C.J., Bullock W.P., Wilson H.M., Dunwell J.M., Thompson J.A., and Wang K., 1994, Production of fertile transgenic maize plants by silicon-carbide whisker-mediated transformation, The Plant Journal, 6(6): 941-948 doi:10.1046/j.1365-313X.1994.6060941.x
Frame B.R., McMurray J.M., Fonger T.M., Main M.L., Taylor K.W., Torney F.J., Paz M.M., and Wang K., 2006, Improved Agrobacterium-mediated transformation of three maize inbred lines using MS salts, Plant Cell Rep., 25(10): 1024-1034 doi:10.1007/s00299-006-0145-2 PMid:16710703
Frame B.R., Shou H., Chikwamba R.K., Zhang Z., Xiang C., Fonger T.M., Pegg S.E.K., Li B., Nettleton D.S., Pei D., and Wang K., 2002, Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system, Plant Physiol, 129: 13-22 doi:10.1104/pp.000653 PMid:12011333 PMCid:1540222
Frame B.R., Zhang H., Cocciolone S.M., Sidorenko L.V., Dietrich C.R., Pegg S.E., Zhen S., Schnable P., and Wang K., 2000, Production of transgenic maize from bombarded type II callus: effect of gold particle size and callus morphology on transformation efficiency, In Vitro Cell Dev Biol Plant, 36:21-29 doi:10.1007/s11627-000-0007-5
Fransz P.F., and Schel J.H.N., 1990, Cytodifferentiation during the development of friable embryogenic callus of maize (Zea mays), Can. J. Bot., 69: 26-33
Fromm M.E., Morrish F., Armstrong C., Williams R., Thomas J., and Klein T.M., 1990, Inheritance and expression of chimeric genes in the progency of transgenic maize plant, Bio. Tech., 8: 833-839
Fromm M.E., Taylor L.P., and Walbot V., 1986, Stable transformation of maize after gene transfer by electroporation, Nature, 319: 791-793 doi:10.1038/319791a0 PMid:3005872
Gelvin S.B., 2003, Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool, Microbial. Mol. Biol. Rev., 67(1): 16-37 doi:10.1128/MMBR.67.1.16-37.2003 PMid:12626681 PMCid:150518
Gordon-Kamm W.J., Spencer T.M., Mangano M.L., Adams T.R., Daines R.J., Start W.G.O., Brien J.V., Chambers S.A., Whitney J., Adams R., Willetts N.G., Rice T.B., Mackey C.J., Krueger R.W., Kausch A.P., and Lemaux P.G., 1990, Transformation of maize cells and regeneration of fertile transgenic plants, Plant Cell, 2: 603-618 doi:10.1105/tpc.2.7.603 PMid:12354967
Gould J., Devey M., Hasegawa O., Ulian E.C., Peterson G., and Smith R.H., 1991, Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex, Plant Physiol., 95: 426-434 doi:10.1104/pp.95.2.426 PMid:16668001 PMCid:1077548
Green C.E., and Phillips R L., 1975, Plant regeneration from tissue cultures of maize, Crop Sci, 15: 417-427
doi:10.2135/cropsci1975.0011183X001500030040x
Grimsley N., Hohn B., Hohn T., and Walden R., 1986, “Agroinfection” an alternative route for viral infection of plants by using the Ti plasmid, Proc. Natl. Acad. Sci., USA, 83: 3282-3286 doi:10.1073/pnas.83.10.3282
He S.J., Dong W., Li H.F., Gu D.M., Chen S.Y., and Tian W.Z., 1999, Production and salt tolerance identification of transgenic maize with betaine aldehyde dehydrogenase gene, Gao Keji Tongxun (High Technology Letters), 2: 50-52 (何锶洁, 董伟, 李慧芬, 谷冬梅, 陈受宜, 田文忠, 1999, 转甜菜碱醛脱氢酶基因玉米及其耐盐性研究, 高科技通讯, 2: 50-52)
Hiei Y., Ishida Y., Kasaoka K., and Komari T., 2006, Improved frequency of transformation in rice and maize by treatment of immature embryos with centrifugation and heat prior to infection with Agrobacterium tumefaciens, The Plant Cell, Tissue Organ Cult., 87(3): 233-243 doi:10.1007/s11240-006-9157-4
Huang X.Q., and Wei Z.M., 2004, High-frequency plant regeneration through callus initiation from mature embryos of maize (Zea mays L.), Plant Cell Rep., 22: 793-800 doi:10.1007/s00299-003-0748-9 PMid:15022014
Huang X.Q., and Wei Z.M., 2005, Successful Agrobacterium-mediated genetic transformation of maize elite inbred lines, Plant Cell, Tissue Organ Cult., 83(2): 187-200 doi:10.1007/s11240-005-5772-8
Hunold R., Bronner R., and Hahne G., 1994, Early events in microprojectile bombardment: cell viability and particle location, Plant J., 5: 593-604 doi:10.1046/j.1365-313X.1994.5040593.x
Ishida Y., Hiei Y., and Komari T., 2007, Agrobacterium-mediated transformation of maize, Nature Protocols, 2: 1614-1621 doi:10.1038/nprot.2007.241 PMid:17585302
Ishida Y., Saito H., Hiei Y., and Komari T., 2003, Improved protocol for transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens, Plant Biotechnol., 20: 57-66
Ishida Y., Saito H., Ohta S., Hiei Y., Komari T., and Kumashiro T., 1996, High efficiency transformation of maize (Zea Mays L.) mediated by Agrobacterium tumefaciens, Nature Biotechnol., 14: 745-750 doi:10.1038/nbt0696-745 PMid:9630983
Johnson L.A., 2000, Corn, the major cereal of the Americas, In: Kulp K., and Ponte J. (eds.), Handbook of cereal science and technology, Dekker, New York, pp.31-80
Kausch A.P., Adams T.R., Mangano M., Zachwieja S.J., Gordon-Kamm W., Daines R., Willets N.G., Chambers S.A., Adams W.Jr., and Anderson A., 1995, Effects of microprojectile bombardment on embryogenic suspension cell cultures of maize (Zea mays L.) used for genetic transformation, Planta, 196: 501-509 doi:10.1007/BF00203650
Kim H.A., Utomo S.D., Kwon S.Y., Min S.R., Kim J.S., Yoo H.S., and Choi P.S., 2009, The development of herbicide-resistant maize: Stable Agrobacterium-mediated transformation of maize using explants of typeIIembryogenic calli, Plant Bio. Rep., 3: 227-283
Klein T.M., Fromm M., Weissinger A., Tomes D., Schaaf S., Sletten M., and Sanford J.C., 1988, Transfer of foreign genes into intact maize cells with high-velocity microprojectiles, Proc. Natl. Acad. Sci., USA, 85: 4305-4309 doi:10.1073/pnas.85.12.4305
Klein T.M., Kornstein L., Sanford J.C., and Fromm M.E., 1989, Genetic transformation of maize cells by particle bombardment, Plant Physiol., 91: 440-444 doi:10.1104/pp.91.1.440 PMid:16667039 PMCid:1062012
Klein T.M., Wolf E.D., Wu R., and Sanford J.C., 1987, High-velocity microprojectiles for delivering nucleic acids into living cells, Nature, 327: 70-73 doi:10.1038/327070a0
Li W., Masilamany P., Kasha K.J., and Peter Pauls K., 2002, Developmental, tissue culture, and genotypic factors affecting plant regeneration from shoot apical merstems of germinated (Zea mays L.) seedlings, In vitro Cell Dev. Biol. Plant, 38: 285-292 doi:10.1079/IVP2002291
Liu D.W., Wang S.C., Xie Y.J., and Dai J.R., 2000, Study on pollen fertility in transgenic maize with transgene of Zm13-barnase, Zhiwu Xuebao (Acta Botanica Sinica), 42(6): 611-615 (刘大文, 王守才, 谢友菊, 戴景瑞, 2000, 转Zm13-Barnase基因玉米的获得及其花粉育性研究, 植物学报, 42(6): 611-615)
Liu X.H., Zhang H.M., Wu C.L., Tan Z.B., He D.W., and Li L.H., 2009, Establishment of a high-efficiency plant regeneration and transformation system for the elite maize inbred lines from three heterotic groups, African Journal of Biotechnol., 8(19): 4911-4917
Liu X.H., Zhang H.W., Liu X., Liu X.J., Tan Z.B., and Rong Y.Z., 2005, Isolation of the capsid protein gene of maize dwarf mosaic virus and its transformation in maize, Shengwu Gongcheng Xuebao (Chinese Journal of Biotechnology), 21(1): 144-148 (刘小红, 张红伟, 刘昕, 刘欣洁, 谭振波, 荣延昭, 2005, MDMV CP基因的克隆及其转基因玉米的研究, 生物工程学报, 21(1): 144-148)
Negrotto D., Jolley M., Beer S., Wenck A.R., and Hansen G., 2000, The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation, Plant Cell Rep., 19: 798-803 doi:10.1007/s002999900187
O’Connor-Sanchez A., Cabrera-Ponce J.L., Valdez-Melara M., Tellez-Rodriguez P., Pons-Hernandez J.L., and Herrera-Estrella L., 2002, Transgenic maize plants of tropical and subtropical genotypes obtained from calluses containing organogenic and embryogenic-like structures derived from shoot tips, Plant Cell Rep., 21: 302-312 doi:10.1007/s00299-002-0502-8
Oltmanns H., Frame B., Lee L.Y., Johnson S., Li B., Wang K., and Gelvin S.B., 2010, Generation of backbone-free, low transgene copy plants by launching T-DNA from the Agrobacterium chromosome, Plant Physiol., 152(3): 1158-1166 doi:10.1104/pp.109.148585 PMid:20023148
Pareddy D., and Petolino J., 1997, Maize transformation via helium blasting, Maydica., 42: 143-154
Pescitelli S.M., and Sukhapinda K., 1995, Stable transformation via electroporation into maize type-IIcallus and regeneration of fertile transgenic plants, Plant Cell Rep., 14(11): 712-716 doi:10.1007/BF00232653
Petolino J.F., Hopkins N.L., Kosegi B.D., and Skokut M., 2000, Whisker-mediated transformation of embryogenic callus of maize, Plant Cell Rep., 19(8): 781-786 doi:10.1007/s002999900180
Prakash N.S., Bhojaraja R., Shivbachan S.K., Priya G.G.H., Nagraj T.K., Prasad V., Babu V.S., Jayaprakash T.C., Dasgupta S., Spencer T.M., and Boddupalli R.S., 2009, Maker-free transgenic corn plant production through co-bombardment, Plant Cell Rep., 28: 1655-1668 doi:10.1007/s00299-009-0765-4 PMid:19701639
Quan R.D., Shang M., Zhang H., Zhao Y.X., and Zhang J.R., 2004, Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebetaine synthesis in maize, Plant Sci., 166(1): 141-149 doi:10.1016/j.plantsci.2003.08.018
Register J.C., Peterson D.J., Bell P.J., Bullock W.P., Evans I.J., Frame B., Greenland A.J., Higgs N.S., Jepson I., Jiao S., Lewnau C.J., Silick J.M., and Wilson H.M., 1994, Structure and function of selectable and non-selectable transgenes in maize after introduction by particle bombardment, Plant Mol. Biol., 25: 951-961 doi:10.1007/BF00014669 PMid:7919215
Sairam R.V., Parani M., Franklin G., Lifeng Z., Smith B., MacDougall J., Wilber C., Sheikhi H., Kashikar N., Meeker K., Al-Abed D., Berry K., Vierling R., and Goldman S.L., 2003, Shoot meristem: an ideal explant for Zea mays L. transformation, Genome, 46(2): 323-329 doi:10.1139/g02-120 PMid:12723048
Shou H.X., Frame B.R., Whitham S.A., and Wang K., 2004, Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation, Mol. Breeding, 13(2): 201-208 doi:10.1023/B:MOLB.0000018767.64586.53
Shukla V.K., Doyon Y., Miller J.C., DeKelver R.C., Moehle E.A., Worden S.E., Mitchell J.C., Arnold N.L., Gopalan S., Meng X., Choi V.M., Rock J.M., Wu Y.Y., Katibah G.E., Zhifang G., McCaskill D., Simpson M.A., Blakeslee B., Greenwalt S.A., Butler H.J., Hinkley S.J., Zhang L., Rebar E.J., Gregory P.D., and Urnov F.D., 2009, Precise genome modification in the crop species Zea mays using zinc-finger nucleases, Nature, 459(7245): 437-441
doi:10.1038/nature07992 PMid:19404259
Sidorov V., Gilbertson L., Addae P., and Duncan D., 2006, Agrobacterium-mediated transformation of seedling-derived maize callus, Plant Cell Rep., 25: 320-328 doi:10.1007/s00299-005-0058-5 PMid:16252091
Songstad D.D., Armstrong C.L., Petersen W.L., Hairston B., and Hinchee M.A., 1996, Production of transgenic maize plants and progeny by bombardment of Hi-II immature embryos, In vitro Cell Dev. Biol., 32: 179-183 doi:10.1007/BF02822763
Vain P., McMullen M.D., and Finer J.J., 1993, Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize, Plant Cell Rep., 12: 84-88 doi:10.1007/BF00241940
Wan Y., Widholm J.M., and Lemaux P.G., 1995, Type I callus as a bombardment target for generating fertile transgenic maize (Zea mays L.), Planta, 196: 7-14 doi:10.1007/BF00193211
Wang A.S., Evans R.A., Altendorf P.R., Hanter J.A., Doyle M.C., and Rosichan J.L., 2000, A mannose selection system for production of fertile transgenis maize plants from proplasts, Plant Cell Rep., 19: 654-660 doi:10.1007/s002999900181
Yu Y.Z., Jing N.Y., Wang B., and Ji J., 2003, Transfer of P1gene into maize with particle bombardment and regeneration of transgenic plants, Shenyang Nongye Daxue Xuebao (Journal Of Shenyang Agricultural Univerisity), 34(6): 423-425 (余云周, 金宁一, 王罡, 季静, 2003, 用基因枪将p1结构蛋白基因转入玉米及其转基因植株再生研究, 沈阳农业大学学报, 34(6): 423-425)
Zhang H.W., Zhang H.M., Zheng Z.P., Chen G., Wang G.Y., and Tan Z.B., 2004, Production of Bt transgenic maize resistant to corn borer, Xibei Zhiwu Xuebao (Acta Bot. Boreali.-Occident. Sin.), 24(7): 1266-1270 (张红伟, 张红梅, 郑祖平, 陈刚, 王国英, 谭振波, 2004, Bt转基因玉米的获得及其对玉米螟的抗性分析, 西北植物学报, 24(7):1266-1270)
Zhang S., Williams-Carrier R., and Lemaux P.G., 2002, Transformation of recalcitrant maize elite inbreds using in vitro shoot meristematic cultures induced from germinated seedlings, Plant Cell Rep., 21: 263-270 doi:10.1007/s00299-002-0513-5
Zhang Y.S., Yin X.Y., Yang A.F., Li G.S., and Zhang J.R., 2005, Stability of inheritance of transgenes in maize (Zea mays L.) lines produced using different transformation methods, Euphytica, 144(1-2): 11-22 doi:10.1007/s10681-005-4560-1
Zhao Z.Y., Gu W., Cai T., Tagliani L., Hondred D., Bond D., Schroeder S., Rudert M., and Pierce D., 2001, High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize, Mol. Breed., 8: 323-333
doi:10.1023/A:1015243600325