植物中NH4+的毒害  

王连勇1 , 卜媛媛1,2 , 张欣欣1 , 根本圭介1 , 高野哲夫1 , 柳参奎1
1. 东北林业大学东北油田盐碱植被恢复与重建教育部重点实验室,盐碱地生物资源环境研究中心, 哈尔滨,150040
2. 东京大学, 东京, 188-0002
作者    通讯作者
基因组学与应用生物学, 2011 年, 第 30 卷, 第 36 篇   doi: 10.5376/gab.cn.2011.30.0036
收稿日期: 2011年06月22日    接受日期: 2011年07月01日    发表日期: 2011年07月07日
© 2011 BioPublisher 生命科学中文期刊出版平台
这是一篇采用Creative Commons Attribution License进行授权的开放取阅论文。只要对本原作有恰当的引用,版权所有人允许和同意第三方无条件的使用与传播。
推荐引用:

引用格式(中文):
王连勇等, 2011,植物中NH4+的毒害,基因组学与应用生物学(online), Vol.30 No.36 pp.1232-1237 (doi: 10.5376/gab.cn.2011.30.0036)
引用格式(英文):
Wang et al., 2011, Ammonium toxicity in plant, Jiyinzuxue Yu Yingyong Shengwuxue (Genomics and Applied Biology), Vol.30 No.36 pp.1232-1237 (doi: 10.5376/gab.cn.2011.30.0036)

摘要

NH4+不但是植物生长必须的一类重要的氮源,而且也是存在于植物代谢中的一类广泛的中间产物。但是,当外界NH4+浓度过高的时候,能够对大多数的高等植物的生长产生抑制。在本文中,我们讨论了不同物种对NH4+的敏感性,和受NH4+毒害的植物表现出的症状,尤其是对NH4+毒害的机制和缓解NH4+毒害的手段做了较详细的总结论述。不同植物对NH4+毒害的敏感度是不同的,受NH4+毒害危害的植物的生长受到明显的抑制,然而,施用混合氮源和增加培养条件中K+浓度均能够降低NH4+毒害的危害程度。

关键词
植物;铵毒害;铵离子

植物体内的NH4+可以通过根系从土壤中直接吸收,也是某些途径如蛋白降解、光呼吸、和木质素的生物合成过程中,植物体内一些有机化合物的脱氨作用的产物(Joy, 1988)。高浓度的NH4+能够对植物的生长产生抑制作用(Gerendás et al., 1997)。在一些土地中,NH4+的浓度能够达到40 mmol/Lt (Kronzucker et al., 2003)。NH4+作为唯一氮源时,能够对植物产生NH4+毒害。另外,在利用尿素作为肥料的土壤中,由于细菌脲酶的作用,将尿素大量的转化为NH4+和CO2,使土壤中NH4+浓度大幅度升高,从而能够造成植物的NH4+毒害(Bremner and Krogmeier, 1989)。除此以外,许多非生物胁迫也能够引起植物体内的NH4+的超积累,如果不能有效的将NH4+同化,也能够产生NH4+毒害的症状(Lutts et al., 1999; Skopelitis et al., 2006)。并且近来的研究发现,过量的NH4+的积累被认为是各类生态系统中植物物种灭绝的一个因素(Clark and Tilman, 2008)。因此,对于NH4+毒害机制的深入认识和对缓解NH4+毒害的方法的探索具有重要的意义。

1 NH4+-敏感物种和NH4+-抗性物种的分类
NH4+毒害的的现象是很常见的,但是不同的植物物种对它做出反应的阈值的不同的。对NH4+离子毒性敏感的驯化植物中包括番茄(Magalhäes and Huber, 1989)、土豆(Cao and Tibbits, 1998)、大麦(Britto et al., 2001)、豌豆(Bligny et al., 1997)、蓖麻(van Beusichem et al., 1988)、芥末(Vollbrecht et al., 1989)、甜菜(Breteler, 1973)、草莓(Claussen and Lenz, 1999)和柑橘(Dou et al., 1999)。在许多自然生态系统的土壤中,NH4+日益成为了主要的N源形式。野生型的草本植物山金车和蓟属荷兰芹(de Graaf et al., 1998)、苦草(Hauxwell et al., 2001)和肉苁蓉(Westwood and Foy, 1999)也都是对NH4++毒性尤其敏感的。

存在的对NH4+毒性抗性较强的植物包括驯化物种中的水稻(Sasakawa and Yamamoto, 1978)和洋葱(Abbes et al., 1995)。野生植物包括石楠(de Graaf et al., 1998),乌拉草(Falkengren-Grerup, 1995),山龙眼科的植物(Smirnoff et al., 1984)和一些温带被子树木(Garnett et al., 2001)。即使是对NH4+毒性抗性较高的物种,当对它们施用足够量的NH4+的时候,它们也能表现出中毒的性状。例如在过量NH4+的处理下,水稻表现出叶片变黄和生长受抑制的表型,尤其是在低钾的条件下。高度的NH4+的沉积能够引起森林中被认为是高度抗NH4+的物种红云衫的大量死亡。对NH4+毒害的抗性是随物种的不同,生长时期不同而变化的。

2 NH4+毒害的症状
NH4+毒害能够使植物的形态发生改变。能够产生NH4+毒害的外源NH4+的浓度一般要在0.1~0.5mmol/L。大麦作为一种对NH4+敏感的植物,对其的研究显示,NH4+毒害能够造成大麦的叶片发黄,并且抑制植物的生长,尤其是抑制根的伸长(Li et al., 2010)。除此以外,NH4+毒害还能够造成其他一些可见的症状,如造成根/叶的比率下降、降低产量等。更为重要的是,NH4+毒害还能够对种子的萌发和立苗产生抑制作用,它能够造成自然界中某些种子植物的灭绝。

植物体内过量的NH4+的积累还能够影响植物对某些营养元素的吸收和激素的平衡,并且能够导致溶解性碳酸浓度的下降,同时,它能够增加氨基酸的浓度。另外,NH4+胁迫也能够诱导植物体内产生大量的ROS (reactive oxygen species),包括超氧自由基O2-和H2O2 (Wang et al., 2010)。

尽管在NH4+毒害条件下,降低了无机阳离子的吸收,但是吸收的NH4+的总量还是很大的,从而导致了植物体内的阳离子浓度仍然比阴离子浓度高(van Beusichem et al., 1988)。同时,受NH4+毒害的作用的植物能够将根系周围的环境酸化。这一现象可能的原因是为了平衡植物体内的电荷紊乱,大量的质子从植物中流出。然而,在硝态氮条件中培养的植株能够导致周围环境的碱化(Goodchild and Givan, 1990)。

3过量NH4+产生毒害的机制
许多研究者对过量的NH4+能够对植物产生毒害的现象的原理做了推测。大多数人认为,植物体内大量的NH4+导致对K+、Mg2+和Ca2+吸收的降低,从而引起植物体内离子的紊乱(Roosta and Schjoerring, 2007)。根中快速同化的NH4+,需要大量的碳骨架作为底物完成NH4+同化成氨基酸的过程,从而引起植物的根中碳骨架的不足,最终引起毒害(Schjoerring et al., 2002)。NH4+的同化也能够导致H+的释放,并且进一步引起脱羧反应,是细胞中碳酸的浓度下降(Raven and Smith, 1976)。根中脱羧导致的碳酸浓度的下降,进一步导致了根中碳骨架的缺乏,从而引起了增加吸收阴离子来平衡细胞内的电荷。

有研究者认为,NH4+毒害与植物体内激素的紊乱有关(Barker, 1999; Walch-Liu et al., 2000)。过量的NH4+导致的植物主根生长受抑制的现象被认为是与生长素的转运或者信号途径有关的(Cao et al., 1993),并且在NH4+浓度较高的植物的叶中,发现有乙烯产生(You and Barker, 2004)。

另外,有研究者认为NH4+毒害与光和速率的降低有关(Puritch and Barker, 1967; Gerendás et al., 1997)。
 
最近对大麦的研究结果显示,在高NH4+浓度下,生长受抑制的大麦,是由于NH4+穿过质膜导致的能量浪费造成的。细胞内过量的NH4+被一个未知的转运蛋白以消耗能量为代价转运出细胞(Britto et al., 2001)。根中高的呼吸速率和排出NH4+对能量的需求暗示了,这可能是高浓度的外源NH4+对植物形成危害的本质原因。在植物细胞中,过量的积累NH4+,形成了对NH4+的跨质膜的过多的转运,从而形成了NH4+毒害。许多细菌在低浓度的K+和高浓度的NH4+离子的环境中,由于对过量的NH4+进行跨质膜转运,从而导致了呼吸作用的增强。

最新的研究发现GDP-甘露糖焦磷酸化酶(GMPase)与拟南芥根中的NH4+敏感有关(Qin et al., 2008;Barth et al., 2010)。在这个研究中,GMPase活性的降低,造成了蛋白质的N-糖基化过程的缺陷,这被认为是参与NH4+抑制根生长现象的下游重要的分子水平的步骤。N-糖激化是蛋白正确折叠所必须的(Lerouge et al., 1998),并且对启动蛋白折叠、纤维素的合成、细胞壁的稳定性以及维持细胞的活力方面具有重要的作用(Lukowitz et al., 2001; Koiwa et al., 2003; Hoeberichts et al., 2008; Kang et al., 2008)。GDP-甘露糖是对于拟南芥中蛋白质的正确的N-糖激化的过程和抗坏血酸的合成是很重要的(Conklin et al., 1999; Lukowitz et al., 2001)。cty1是GMPase发生无义突变的突变株,GMPase是GDP-甘露糖合成中的关键酶,这个突变株表现出了胚胎致死的表型(Nickle and Meinke, 1998; Lukowitz et al., 2001)。vtc1hsn1是GMPase的同源基因,在正常的条件下,这两个突变株表现出的表型与野生型没有差异(Conklin et al., 1999; Qin et al., 2008),但是当处于高NH4+环境中,突变株的根长明显的受到抑制(Qin et al., 2008; Barth et al., 2010)。在cty1中表现出的胚胎致死,和vtc1hsn1的根长对NH4+敏感的表型,都是由于N-糖激化的缺陷造成的。然而,对于蛋白的糖激化是否与NH4+跨质膜转运的过程有关的问题还有待进一步的研究。

4 NH4+毒性的缓解
NH4+毒性造成的危害是很大的,但是我们可以通过一定的手段来缓解它。提高溶液中的pH能够在一定程度上缓解NH4+毒害的程度。另外优化光强度也能够缓解在NH4+为唯一氮源的培养基上生长的植物的NH4+毒害症状。由于NH4+毒害能够影响植物对营养元素的吸收,增强环境中的营养元素的浓度,尤其是营养阳离子的浓度也能够在一定程度上缓解NH4+毒害。无论是在培养基中还是在大田里提高K+的浓度,都能够起到缓解NH4+毒害的作用(Barker et al., 1967; Lips et al., 1990; Zhang et al., 1990; Feng and Barker, 1992; Barker, 1995)。

当NH4+作为唯一氮源供给的时候,能够形成明显的NH4+毒害,但是当与硝酸盐共同作为氮源的时候,NH4+毒害的症状能得到明显的改善(Gill and Reisenauer, 1993; Schortemeyer et al., 1997)。并且,混合的氮源能够形成一种协同生长,总的生长速率超过了这两种氮源单独存在时候的生长情况(Heberer and Below, 1989)。更为有趣的是,在针叶树的生长中也观察到了这种协同生长的现象。对这个现象的可能解释有两个:一是当混合氮源的时候,能够提高细胞分裂素的合成(Chen et al., 1998);二是植物吸收硝酸根能够导致植物的根部碱化,从而缓解了由于NH4+毒害产生的植物根部的酸化程度(Marschner, 1995)。

5展望
对于NH4+敏感的物种来说,过量的NH4+对其生长和产量的抑制作用是很严重的,并且有许多农作物都属于对NH4+敏感的类型,它们的产量受NH4+毒害的影响也是很大的。另外,NH4+毒害对生态方面的影响也是很显著的。更为有效的缓解NH4+毒害的手段是基于对NH4+毒害机制的理解的基础上的。利用硝酸盐的和铵态氮的混合培养基和增加培养条件中K+浓度缓解NH4+毒害的手段就是成功的应用实例。但是,由于NH4+毒害产生的症状是多样性的,并且它可能与多种代谢相关,产生的毒害的机理也可能不是单一的,这就增加了对NH4+毒害机制研究的难度。考虑到NH4+毒害造成的危害的程度,将来还需要更多的研究,才能更好的揭示NH4+毒害的机理。

参考文献
Abbes C., Parent L.E., Karam A., and Isfan D., 1995, Onion response to ammoniated peat and ammonium sulfate in relation to ammonium toxicity, Canadian Journal of Soil Science, 75: 261-271 doi:10.4141/cjss95-038

Barker A.V., 1995, Laboratory experiment to assess plant responses to environmental stresses, Journal of Natural Resources and Life Sciences Education, 24(2): 145-149

Barker A.V., 1999, Ammonium accumulation and ethylene evolution by tomato infected with root-knot nematode and grown under different regimes of plant nutrition, Communications in Soil Science and Plant Analysis, 30(1-2): 175-184 doi:10.1080/00103629909370194

Barker A.V., Maynard D.N., and Lachman W.H., 1967, Induction of tomato stem and leaf lesions and potassium deficiency by excessive ammonium nutrition, Soil Science, 103(5): 319-327 doi:10.1097/00010694-196705000-00003

Barth C., Gouzd Z.A., Steelt H.P., and Imperio R.M., 2010, A mutation in GDP-mannose pyrophosphorylase causes conditional hypersensitivity to ammonium, resulting in Arabidopsis root growth inhibition, altered ammonium metabolism, and hormone homeostasis, Journal of Experimental Botany, 61(2): 379-394 doi:10.1093/jxb/erp310 PMid:20007685    PMCid:2803207

Bligny R., Gout E., Kaiser W., Heber U., Walker D., and Douce R., 1997, pH regulation in acid-stressed leaves of pea plants grown in the presence of nitrate or ammonium salts: Studies involving 31P-NMR spectroscopy and chlorophyll fluorescence, Biochimica et Biophysica Acta, 1320(2): 142-152 doi:10.1016/S0005-2728(97)00018-2

Bremner J.M., and Krogmeier M.J., 1989, Evidence that the adverse effect of urea fertilizer on seed germination in soil is due to ammonia formed through hydrolysis of urea by soil urease, Proceedings of the National Academy of Sciences of the United States of America, 86(21): 8185-8188 doi:10.1073/pnas.86.21.8185

Breteler H., 1973, A comparison between ammonium and nitrate nutrition of young sugar beet plants grown in nutrient solutions at constant acidity. 2. Effect of light and carbohydrate supply, Neth J Agric Sci, 21: 297-307

Britto D.T., Siddiqi M.Y., Glass A.D.M., and Kronzucker H.J., 2001, Futile transmembrane NH4+ cycling: A cellular hypothesis to explain ammonium toxicity in plants, Proceedings of the National Academy of Sciences of the United States of America, 98(7): 4255-4258 doi:10.1073/pnas.061034698 PMid:11274450    PMCid:31212

Cao W., and Tibbits T.W., 1998, Response of potatoes to nitrogen concentrations differ with nitrogen forms, Journal of Plant Nutrition, 21(4): 615-623doi:10.1080/01904169809365429 PMid:11541134

Cao Y.W., Glass A.D.M., and Crawford N.M., 1993, Ammonium inhibition of Arabidopsis root growth can be reversed by potassium and by auxin resistance mutations aux1, axr1, and axr2, Plant Physiology, 102(3): 983-989 doi:10.1104/pp.102.3.983 PMid:8278539    PMCid:158872

Chen J.G., Cheng S.H., Cao W.X., and Zhou X., 1998, Involvement of endogenous plant hormones in the effect of mixed nitrogen source on growth and tillering of wheat, Journal of Plant Nutrition, 21(1): 87-97 doi:10.1080/01904169809365385

Clark C.M., and Tilman D., 2008, Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands, Nature, 451: 712-715 doi:10.1038/nature06503 PMid:18256670

Claussen W., and Lenz F., 1999, Effect of ammonium or nitrate nutrition on net photosynthesis, growth, and activity of the enzymes nitrate reductase and glutamine synthetase in blueberry, raspberry and strawberry, Plant and Soil, 208(1): 95-102 doi:10.1023/A:1004543128899

Conklin P.L., Norris S.R., Wheeler G.L., Williams E.H., Smirnoff N., and Last R.L., 1999, Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis, Proceedings of the National Academy of Sciences of the United States of America, 96(7): 4198-4203 doi:10.1073/pnas.96.7.4198

de Graaf M.C.C., Bobbink R., Roelofs J.G.M., and Verbeek P.J.M., 1998, Differential effects of ammonium and nitrate on three heathland species, Plant Ecology, 135(2): 185-194 doi:10.1023/A:1009717613380

Dou H., Alva A.K., and Bondada B.R., 1999, Growth and chloroplast ultrastructure of two citrus rootstock seedlings in response to ammonium and nitrate nutrition, Journal of Plant Nutrition, 22(11): 1731-1744 doi:10.1080/01904169909365750

Falkengren-Grerup U., 1995, Interspecies differences in the preference of ammonium and nitrate in vascular plants, Oecologia, 102(3): 305-311 doi:10.1007/BF00329797

Feng J., and Barker A.V., 1992, Ethylene evolution and ammonium accumulation by nutrient-stressed tomatoes grown with inhibitors of ethylene synthesis or action, Journal of Plant Nutrition, 15(2): 155-167 doi:10.1080/01904169209364308

Garnett T.P., Shabala S.N., Smethurst P.J., and Newman I.A., 2001, Simultaneous measurement of ammonium, nitrate and proton fluxes along the length of eucalypt roots, Plant and Soil, 236: 55-62 doi:10.1023/A:1011951413917

Gerendás J., Zhu Z.J., Bendixen R., Ratcliffe R.G., and Sattelmacher B., 1997, Physiological and biochemical processes related to ammonium toxicity in higher plants, Journal of Plant Nutrition and Soil Science, 160(2): 239-251 doi:10.1002/jpln.19971600218

Gill M.A., and Reisenauer H.M., 1993, Nature and characterization of ammonium effects on wheat and tomato, Agronomy Journal, 85(4): 874-879 doi:10.2134/agronj1993.00021962008500040018x

Goodchild J.A., and Givan C.V., 1990, Influence of ammonium and extracellular pH on the amino and organic acid contents of suspension culture cells of Acer pseudoplatanus, Physiologia Plantarum, 78(1): 29-37 doi:10.1034/j.1399-3054.1990.780105.x

Hauxwell J., Cebrian J., Furlong C., and Valiela I., 2001, Macroalgal canopies contribute to eelgrass (Zostera marina) decline in temperate estuarine ecosystems, Ecology, 82(4): 1007-1022 doi:10.2307/2679899

Heberer J.A., and Below F.E., 1989, Mixed nitrogen nutrition and productivity of wheat grown in hydroponics, Annals of Botany, 63(6): 643-649

Hoeberichts F.A., Vaeck E., Kiddle G., Coppens E., van de Cotte B., Adamantidis A., Ormenese S., Foyer C.H., Zabeau M., Inzé D., Périlleux C., van Breusegem F., and Vuylsteke M., 2008, A temperature-sensitive mutation in the Arabidopsis thaliana phosphomannomutase gene disrupts protein glycosylation and triggers cell death, The Journal of Biological Chemistry, 283(27): 5708-5718 PMid:18086684

Joy K.W., 1988, Ammonia, glutamine, and asparagines: a carbon-nitrogen interface, Canadian Journal of Botany, 66(10): 2103-2109

Kang J.S., Frank J., Kang C.H., Kajiura H., Vikram M., Ueda A., Kim S., Bahk J.D., Triplett B., Fujiyama K., Lee S.Y., von Schaewen A., and Koiwa H., 2008, Salt tolerance of Arabidopsis thaliana requires maturation of N-glycosylated proteins in the Golgi apparatus, Proceedings of the National Academy of Sciences of the United States of America, 105(15): 5933-5938 doi:10.1073/pnas.0800237105 PMid:18408158    PMCid:2311335

Koiwa H., Li F., McCully M.G., Mendoza I., Koizumi N., Manabe Y., Nakagawa Y., Zhu J., Rus A., Pardo J.M., Bressan R.A., and Hasegawa P.M., 2003, The STT3a subunit isoform of the Arabidopsis oligosaccharyltransferase controls adaptive responses to salt/osmotic stress, The Plant Cell, 15(10): 2273-2284 doi:10.1105/tpc.013862 PMid:12972670    PMCid:197294

Kronzucker H.J., Siddiqi M.Y., Glass A.D.M., and Britto D.T., 2003, Root ammonium transport efficiency as a determinant in forest colonization patterns: An hypothesis, Physiologia Plantarum, 177(2): 164-170 doi:10.1034/j.1399-3054.2003.00032.x

Lerouge P., Cabanes-Macheteau M., Rayon C., Fitchette-Lainé A.C., Gomord V., and Faye L., 1998, N-Glycoprotein biosynthesis in plants: Recent developments and future trends, Plant Molecular Biology, 38(1-2):31-48 doi:10.1023/A:1006012005654 PMid:9738959

Li Q., Li B.H., Kronzucker H.J., and Shi W.M., 2010, Root growth inhibition by NH4+ in Arabidopsis is mediated by the root tip and is linked to NH4+ efflux and GMPase activity, Plant, Cell and Environment, 33(9): 1529-1542 PMid:20444215

Lips S.H., Leidi E.O., Silberbush M., Soares M.I.M., and Lewis O.E.M., 1990, Physiological aspects of ammonium and nitrate fertilization, Journal Plant Nutrition, 13(10): 1271-1289 doi:10.1080/01904169009364151

Lukowitz W., Nickle T.C., Meinke D.W., Last R.L., Conklin P.L., and Somerville C.R., 2001, Arabidopsis cyt1 mutants are deficient in a mannose-1-phosphate guanylyltransferase and point to a requirement of N-linked glycosylation for cellulose biosynthesis, Proceedings of the National Academy of Sciences of the United States of America, 98(5): 2262-2267 doi:10.1073/pnas.051625798 PMid:11226227    PMCid:30126

Lutts S., Majerus V., and Kinet J.M., 1999, NaCl effects on praline metabolism in rice (Oryza sativa) seedlings, Physiologia Plantarum, 105(3): 450-458 doi:10.1034/j.1399-3054.1999.105309.x

Magalhäes J.R., and Huber D.M., 1989, Ammonium assimilation in different plant species as affected by nitrogen form and pH control in solution culture, Nutrient Cycling in Agroecosystems, 21(1): 1-9

Marschner H., 1995, Mineral nutrition of higher plants, Academic Press, London

Nickle T.C., and Meinke D.W., 1998, A cytokinesis-defective mutant of Arabidopsis (cyt1) characterized by embryonic lethality, incomplete cell walls, and excessive callose, The Plant Journal, 15(3): 321-332 doi:10.1046/j.1365-313X.1998.00212.x PMid:9750345

Puritch G.S., and Barker A.V., 1967, Structure and function of tomato leaf chloroplasts during ammonium toxicity, Plant Physiology, 42(9): 1229-1238 doi:10.1104/pp.42.9.1229 PMid:16656644    PMCid:1086708

Qin C., Qian W., Wang W., Wu Y., Yu C., Jiang X., Wang D., and Wu P., 2008, GDP-mannose pyrophosphorylase is a genetic determinant of ammonium sensitivity in Arabidopsis thaliana, Proceedings of the National Academy of Sciences of the United States of America, 108(26): 18308-18313 doi:10.1073/pnas.0806168105 PMid:19011088    PMCid:2587558

Raven J.A., and Smith F.A., 1976, Nitrogen assimilation and transport in the vascular land plants in relation to intracellular pH regulation, New Phytologist, 76(3): 415-431 doi:10.1111/j.1469-8137.1976.tb01477.x

Roosta H.R., and Schjoerring J.K., 2007, Effects of ammonium toxicity on nitrogen metabolism and elemental profile of cucumber plants, Journal of Plant Nutrition, 30(11): 1933-1951 doi:10.1080/01904160701629211

Sasakawa H., and Yamamoto Y., 1978, Comparison of the uptake of nitrate and ammonium by rice seedlings: Influences of light, temperature, oxygen concentration, exogenous sucrose, and metabolic inhibitors, Plant Physiology, 62(4): 665-669 doi:10.1104/pp.62.4.665 PMid:16660579    PMCid:1092191

Schjoerring J.K., Husted S., Mack G., and Mattsson M., 2002, The regulation of ammonium translocation in plants, Journal of Experimental Botany, 53(370): 883-890 doi:10.1093/jexbot/53.370.883 PMid:11912231

Schortemeyer M., Stamp P., and Feil B., 1997, Ammonium tolerance and carbohydrate status in maize cultivars, Annals of Botany, 79(1): 25-30 doi:10.1006/anbo.1996.0298

Skopelitis D.S., Paranychiankis N.V., Paschalidis K.A., Plianokis E.D., Delis I.D., Yakoumakis D.I., Kouvarakis A., Papadakis A.K., Euripides G., Stephanou E.G., and Roubelakis-Angelakis K.A., 2006, Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenase to form glutamate for proline synthesis in tobacco and grapevine, The Plant Cell, 18(10): 2767-2781 doi:10.1105/tpc.105.038323 PMid:17041150    PMCid:1626620

Smirnoff N., Todd P., and Stewart G.R., 1984, The occurrence of nitrate reduction in the leaves of woody plants, Annals of Botany, 54(3): 363-374

van Beusichem M.L., Kirkby E.A., and Baas R., 1988, Influence of nitrate and ammonium nutrition on the uptake, assimilation, and distribution of nutrients in Ricinus communis, Plant Physiol, 86(3): 914-921 doi:10.1104/pp.86.3.914 PMid:16666008    PMCid:1054594

Vollbrecht P., Klein E., and Kasemir H., 1989, Different effects of supplied ammonium on glutamine synthetase activity in mustard (Sinapis alba) and pine (Pinus sylvestris) seedlings, Physiologia Plantarum, 77(1): 129-135 doi:10.1111/j.1399-3054.1989.tb05988.x

Walch-Liu P., Neumann G., Bangerth F., and Engels C., 2000, Rapid effects of nitrogen form on leaf morphogenesis in tobacco, Journal of Experimental Botany, 51(343): 227-237 doi:10.1093/jexbot/51.343.227 PMid:10938829

Wang C., Zhang S.H., Wang P.F., Li W., and Lu J., 2010, Effects of ammonium on the antioxidative response in Hydrilla verticillata (L.f.) Royle plants, Ecotoxicology and Environmental Safety, 73(2): 189-195 doi:10.1016/j.ecoenv.2009.08.012 PMid:19811833

Westwood J.H., and Foy C.L., 1999, Influence of nitrogen on germination and early development of broomrape (Orobanche spp.), Weed Science, 47: 2-7

You W., and Barker A.V., 2004, Ethylene evolution and ammonium accumulation by tomato plants after root-applied glufosinate-ammonium treatment in the presence of ethylene inhibitors, Communications in Soil Science and Plant Analysis, 35(13-14): 1957-1965 doi:10.1081/CSS-200026823

Zhang Y.S., Sun X., and Ying Q.Z., 1990, The effect of organic manure and potassium in preventing ammonium toxicity in barley, Acta Pedologica Sinica, 27(1): 80-86

基因组学与应用生物学
• 第 30 卷
阅览选项
. PDF(617KB)
. 全文 HTML
读者评论
. 评论
作者的其他论文
.
王连勇
.
卜媛媛
.
张欣欣
.
根本圭介
.
高野哲夫
.
柳参奎
相关论文
.
植物
.
铵毒害
.
铵离子
服务
. Email 推荐给朋友
. 发表评论