2.Research Center for Environment and Development, Beirut Arab University, Lebanon
作者 通讯作者
植物药与药理学杂志, 2016 年, 第 5 卷, 第 10 篇 doi: 10.5376/jpmp.cn.2016.05.0010
收稿日期: 2016年02月11日 接受日期: 2016年03月24日 发表日期: 2016年06月22日
水蒸馏精油是从黎巴嫩野生的Prangos asperula Boiss的不同的新鲜的气生部分(比如茎和叶,花和果实),用气相色谱-质谱法分析法得到的。42、46和4化合物分别占总的新鲜的茎的75.5%, 86.9%和99.8%,叶子、花和果实精油分别确定。这些油的主要化合物是茎和叶中的nerolidol (15.2%), p-menth-3-ene (13.3%), β-myrcene (9.2%); 花里面的p-menth-3-ene (14.9%), nerolidol (14.7%), β-phellandrene (7.9%) ; sabinene (43.5%), β-phellandrene (36.1%), α-phellandrene (11.9%) 和α-terpinene (8.3%)。通过生长抑制和MIC值评价精油的抗菌活性,被测试的细菌和真菌中显示了可变的水平。金黄色葡萄球菌显示的最高灵敏度为(15.06 mm, MIC 5 µL),其次是E. coli(11.80 mm, MIC 10 µL)、A. fumigatus(9.16 mm, MIC 10 µL),T. mentagrophytes(7.3 mm, MIC 25 µL)、S. enteritidis(3.8 mm, MIC 25 µL)和C. albicans(1.96 mm, MIC 50 µL)。精油显示出显著的活性,金黄色葡萄球菌比抗生素诺氟沙星更有效(10 µg),T.癣菌是完全抗制真菌制霉菌素(100 µG)。调查结果证实了这种植物油的抗菌性能的传统的使用和有前途的潜力。这对其他生物的活动和个人的抗菌和抗真菌成分的调查研究提供了可能。
Prangosis,多年生,属伞形科有翼的果实(Davis, 1972).。它由坐落在伊朗-都兰族分布的多样性地区中的约30种物种组成(Duran et al., 2005)。Prangos在东地中海和中东国家已是普遍使用的传统医学。许多研究都指出Prangos物种在驱风,伤口愈合、止血、抗气胀,抗痔疮,驱虫药等多种疾病方面有疗效。(Ulubelen et al., 1995; Shikishima et al., 2001; Tada et al., 2002; Uzel et al., 2006; Massumi et al., 2007; Razavi et al., 2010; Sadraei et al., 2012).。Prangos也在白斑和消化系统疾病的治疗有抗HIV和抗氧化活性的作用(Baytop et al., 1994; Kilic et al., 2007).。同样,Ferula和 Ferulago,根部有催情的特性(Baytop et al., 1994; Kilic et al., 2007)。
Prangos asperula Boiss,俗称Frash Al Dabe’e,是唯一的生长在黎巴嫩上游山区野外的本土Prangos物种(Tannourine, Dahr el Baydar, Ehden, Shouf, Kefraya, Rachaiya).。P. asperula历来用于皮肤病治疗,伤口感染和驱风,对结肠积气和治疗糖尿病有疗效(Loizzo et al., 2008a).。对野生植物的研究得出黎巴嫩野外地区生长的植物的气生部分对一些革兰氏阳性菌和革兰氏阴性菌的活性有抑制作用。叶片中提取的精油有抗菌活性,对肾腺癌细胞的增殖有抑制作用(Bouaoun et al., 2007; Loizzo et al., 2008b)。
P.asperula精油中鉴定出42种松烯萜类,占总精油的92.1%。Sabinene(20.6%),β-phellandrene (19%),γ-terpinene(9%),α-pinene (8.4%),和α-phellandrene (6.1%)是最具代表性的成分。其他精油成分是δ-3-carene, p-cymene and α-bisabolol. Sabinene, α-pinene, α-phellandrene and δ-3-carene被用来测试体外培养的肿瘤细胞的细胞毒活性模型。
所有化合物都没有活性显示。所以得出的结论是,化合物的主要和次要成分都可协同精油的其他细胞毒性成分(Loizzo et al., 2008)。从伊朗植物果油的其他调查表明,δ-3-carene, β-phellandrene, α-pinene, α-humulene, germacrene D and δ-cadinene的果实精油的主要成分(Sajjadi 和 Mehregan, 2003),而δ蒈烯、α异松油烯,α-蒎烯α,柠檬烯,2,3,6-三甲基苯甲醛、乙酸龙脑酯、蛇床子素和CIS乙酸菊烯酯是植物气生部分的提取出的精油中最具代表性的成分(Mirzaei 和 Ramezani, 2008; Sajjadi et al., 2009)。在后者的研究中,研究人员还能够隔离在水果的异戊烯基香豆素蛇床子素,正己烷提取物被认为在预防动脉粥样硬化中,对肝脂肪抑制,抗肿瘤和抗炎活性中有有效作用。
这项研究涉及精油成分的对比分析,从黎巴嫩地区野生的P. asperula中的气生部分提取,对其其抗菌活性进行评价。
1材料与方法
1.1植物材料
野生的P. asperula的气生部分收集自2014年7月,黎巴嫩北部的1750米的tannourine地区。物种鉴定是利用黎巴嫩和叙利亚的新菌群的测定方法(Mouterde, 1970)。凭证标本(RCED 2015-295)存放在黎巴嫩阿拉伯大学研究中心的标本馆。
1.2精油的分离
采访精油提取时间为三小时,用Clevenger-type装置从P. asperula的鲜叶、茎、花和果实中提取 (European, 2008)。挥发油是使用无水硫酸钠来干燥,然后储存在无菌密封瓶在黑暗中在4ºC的环境中直到分析干。根据植物部位鲜重来计算油的产量百分比。
1.3细菌和真菌菌株
试验在认证了的细菌和真菌的菌株(Medi Mark, Europe)中进行。他们是两个致病性革兰氏阳性菌:粪肠球菌(ATCC 29212),金黄色葡萄球菌(ATCC 25923);两革兰氏阴性菌:大肠杆菌(ATCC 8739)、肠炎沙门氏菌(ATCC 13076);两株真菌:丝状烟曲霉(ATCC 1022)、dermatophyte Trichophyton mentagrophytes(ATCC 9533)和白色念珠菌;(ATCC 10231)。
1.4精油的提取
精油提取时间为三小时,用Clevenger-type装置从P. asperula的鲜叶、茎、花和果实中提取 (European, 2008)。挥发油是使用无水硫酸钠来干燥,然后储存在无菌密封瓶在黑暗中在4ºC的环境中直到分析干。根据植物部位鲜重来计算油的产量百分比。
1.5 GC和GC-MS分析
采气相色谱-质谱(GC-MS)法被用来区分精油化合物。这项分析是由安捷伦7890气相色谱仪配备氢火焰离子化检测器(FID)和配备HP-5 MS 5%毛细管柱(30米×0.25毫米×0.25 μM膜厚度)来进行。质谱在70 eV的电子能量和工作的50-550 m/z的质量范围。载气是氦流速为0.8 毫升/分钟。在4 ºC/min的速率下,初始柱温由60ºC增加到280ºC,百分比为1:40。喷油器的温度设置在300ºC。氦气纯度为99.99%。在分割模式下,手动注入1毫升的样品。
1.6通过纸片扩散法测试抗菌活性
总精油的抗菌和抗真菌的活性是用纸片扩散法使用100 μl悬挂在含有106 CFU/ml的细菌传播Mueller-Hinton琼脂培养基上(Merck)。无菌直径6毫米滤纸光盘(绘画纸3号)浸满10 μL精油,并放置在琼脂培养基上。抗生素诺氟沙星(10 µg)和制霉菌素(10 µg)被用作标准抗菌剂或抗真菌剂、并作为正面参照。每个测试运行一式三份,并求出平均值。一个空白光盘作为阴性对照。细菌培养在37 ºC的环境中24小时。而白色念珠菌、毛癣菌分别在在27ºC 中培养48小时和5天,分别。光盘周围生长抑制区的直径(毫米)使用卡尺测量。
1.7最低抑制浓度(MIC)琼脂稀释法
最低抑制浓度采用琼脂稀释法测定是由NCCLS(1997)提出的。同一系列的4个浓度的油(5,10,25和50µL)和0·5%(v/v)的吐温-20被添加到1毫升菌液约含106 CFU / ml培养基的每个生物上。吐温-20(Sigma)是用来提高发酵液中精油的溶解度。每个100 μL的混合都放在培养基上。细菌培养盘在37°C的温度下孵育24小时。MIC测定的最低浓度由抑制培养基上的每个微生物生长测定决定。所有的测试一式三份。。
2结果与讨论
对茎、叶、花和果实的产油量分别为0.09%、0.22%和0.21%。从叶和茎精油中分离出42种化合物,占总数的75.5%;从花的精油中分离出46种化合物,占总数的99.8%;果实精油中的4种化合物占总量的86.9%。主要成分为茎和叶中分离出的nerolidol (15.2%), p-menth-3-ene (13.3%), β-myrcene (9.2%), β-farnesene (4.8%), cis-β-ocimene (3.5%), α-farnesene (3.4%), α-phellandrene (3.2%), α-bisabolol (3.1%), α-caryophyllene (3%), neo-allo-ocimene (1.9%), α-bergamotene (1.8%), cis-α-bisabolene (1.3%), o-ocymol (1.2%), 2-thujene (1.1%) 和safranal (1.1)。氢化萜烯类为主的化学成分(34.1%),其次是含氧倍半萜类(19.4%)和氢化萜(19.1),而含氧萜(2.9)是这种油的一小部分(表 1)。
Table 1 黎巴嫩Prangos asperula Boiss不同的气生部分的化学成分和产量的百分比 |
花中提取的精油的主要成分是p-menth-3-ene (14.9%), nerolidol (14.7%), β-phellandrene (7.9%), α-caryophyllene (5.1%), β-farnesene (5.1%), neo-allo-ocimene (5.1%), α-phellandrene (4.3%), α-farnesene (4.2%), β-trans-ocimene (3.9%), α-bisabolol (2.7%), α-terpinene (2.7%), α-bergamotene (1.6%), α-terpinolene (1.4%), IR-α-pinene (1.2%), cis-β-ocimene (1.2%), α-cedrene (1.1%) and (+)-4-carene (1.1%)。类似于茎和叶,形成氢化萜成分的主要份额(44.7%)其次是氢化萜(22.3%)、含氧倍半萜类(18.7)和含氧化合物(1.2%)。最后,水果的主要成分是烯(43.5%),β-水芹烯(36.1%),α-水芹烯(11.9%)和α-松油烯(8.3%)。
这些研究结果强烈表明,从P.asperula不同的气生部分的精油成分之间存在主要差异。新鲜果实的精油主要来源为桧萜(43.5%),和β-水芹烯(36.1%),而气生部分(茎、叶、花)可以一起被认为由橙花叔醇(分别为15.2%和14.7%,)和p-menth-3-ene(分别为13.3%和14.9%,)。有趣的是,β-月桂烯(9.2%)似乎只在茎、叶精油中。
虽然,在这项研究中的茎和叶油的组成之间的直接比较中,被报告叶子的成分不合理(Loizzo et al., 2008b),在之后的研究中叶的精油的最具代表性的成分是烯(20.6%),和β-水芹烯(19%)和无醇或p-menth-3-ene。(15.2%,13.3%,分别)。此外,β-水芹烯在新鲜果实中作为第二主导成分(36.1%),伊朗的干燥果实的精油成分中也有β-水芹烯(14.7%)的研究也证实了这一点(Sajjadi et al., 2009)。
总的来说,不仅仅是黎巴嫩的精油存在2,3,6-trimethyl benzaldehyde 和 δ-3-carene,伊朗的植物的气生部精油也有这两个成分(分别为18.4%和18%)(Sajjadi et al.,2009)。与其他Prangos物种的精油的研究比较,产量和成分的变表现出相当的定量和定性。在鲜花和其他一些物种的伞形花序的精油中,主要成分有:β-pinene (35.58%); α-pinene (22.13%) and β-phellandrene (12.54%) in P. peucedanifolia (Brusotti et al., 2013), α-pinene (33.87%) in P. pabularia (Razavi, 2012), epi-globulol (21.1%) and β-elemene (19.7%) in P. scabra (Nazemiyeh et al., 2007a), α-pinene (31.78%) and β-bourbonene (15.9%) in P. uloptera (Nazmiyeh et al., 2007b)。
伊朗P. ferulacea花、伞状花序的3种不同的试验在成分发现上有实质性的差异:β-pinene (20.6 %) (Taherkhani et al., 2012), linalool (19.0%); lavandulyl acetate (16.0%); 1,8-cineole (14.5%); α-pinene (12.4%) and geranyl isobutyrate (12.2%) (Akbari et al., 2010), α-pinene (42.2%) and cis-ocimene (36.3%) (Razavi et al., 2010).
因此,目前研究中P. asperula的花、伞状花序中的精油的主要组成部分为p-menth-3-ene (14.9%) and nerolidol (14.7%),这是以前先前文中提到的任何物种中都没有报道的,这似乎可以与我们的植物相区分。
果实中的精油,在P. denticulata的主要成分为sabinene (26.1%),与我们的结果类似(Kilic et al.,2010)。相反,P. ferulacea代表P. ferulacea主要成分;P. pabularia和P. uloptera(63.1%,21.46%,14.98%,分别)也存在在我们的植物精油成分中(Razavi et al., 2010; Razavi, 2012; Nazemiyeh et al., 2007b)。此外,以下列出的主要成分都是我们的研究结果中得出:chrysanthenyl acetate (26.53%), limonene (19.59%), α-pinene (19.50%) in P. ferulacea (Massumi et al., 2007); β-elemene (19.9%), β-farnesene (16.2%) in P. scabra (Nazemiyeh et al., 2007a), α-humulene (16.6%); bicyclogermacrene (16.1%); spathulenol (10.6%) in P. pabularia (Özek et al., 2007), germacrene-D-4-ol (42.8%); α-cadinol (18.5%) in P. bornmuelleri (Başer et al., 1999), γ-terpinene (30.22% and 33.27%), α-pinene (16.71% and 12.83%) (Baser et al., 1996), β-bisabolenal (53.3%) and β-bisabolenol (14.6%) in P. heynlae (Başer et al., 2000), and p-cymene (10.9%) in P. uechtritzii (Özcan et al., 2000)。
总之,上述多样的成分来自不同物种和P.asperula,足区别让不同类型的化学类型,是一种植物特定的生态条件下自适应过程的结果(地理区域、气候条件、采集时期,植物部分,植物干或新鲜状态和提取方法)。
2.1抗微生物活性
纸片扩散法评价的总挥发油的抗菌活性在被测试的细菌和真菌中的易感水平(表2)。金黄色葡萄球菌显示最高的灵敏度(15.06毫米)比抗生素诺氟沙星更有效(9.30毫米)。大肠杆菌的易感性,排在第二位(11.80毫米),其次是A. fumigatus (9.16 mm), T. mentagrophytes (7.3 mm), S. enteritidis (3.8 mm) 和 C. albicans (1.96)是反应最敏感的微生物。
精油没有表现出对粪肠球菌是完全耐挥发油的任何回应。它可能会注意到,相对大量的T.癣菌敏感性较高的重要性(7.3毫米)的油是完全的抗真菌制霉菌素(10 µG)。麦克MIF值由琼脂稀释法平均分别为5µL由大肠杆菌金黄色葡萄球菌和烟曲霉(10 µL)、肠炎和T.癣菌(25 µL)和白色念珠菌(50 µL)。我们的结果与以前的研究测试油的植物从黎巴嫩对多种微生物均表现出显著的活动支持在范围广泛的疾病的处理厂,并确认其潜在的对植物油的抗菌性能的传统应用成果(Bouaoun et al., 2007)。据报道,一些主要的化合物具有抗菌活性。特别是,nerolidol, β-phellandrene, sabinene报告具有抗菌和抗真菌活性((Togashi et al., 2008; Park et al., 2009; Krist et al., 2015)。研究结果进一步强调选择含有新的抗菌物质的植物的民族植物学的方法的重要性,特别是当考虑细菌耐药发展的增加,真菌和酵母的抗生素。
表 2 平均±SD生长抑制区和Prangos asperula Boiss精油的MIC值/ MFC |
油的强抑制活性,尤其对金黄色葡萄球菌和T.癣菌,可能是氢化单萜成分占34.1%,44.7%的关系,对茎叶油99.8%、花和果实,分别。然而,很难将一个复杂的混合物的活性成分尤其是一单或组时,一些证据表明,次要成分有抗菌活性的发挥着重要的作用,可能是通过与各种成分产生协同效应(Cox et al., 2000; Loizzo et al., 2008; Zouari et al., 2010)。
3结果
P.asperula是一个黎巴嫩本土植物具有许多药用价值。这项研究提出了第一次知识的茎和叶,鲜花和水果,出现独特的,基本上不同于以前报道的油的组合物的油。抗菌活性表明一个新的来源的抗菌化合物,在制药工业中应用的潜力。需要进一步的研究,以更好地了解油及其成分的生物学特性。
Akbari M.T., Esmaeili A., Zarea A.H., Saad N., and Bagheri F., 2010, Chemical composition and antibacterial activity of essential oil from leaves, stems and flowers of Prangos ferulacea (L.) Lindl. grown in Iran. Bulgarian Chemical Communications, 42(1): 36-39
Akhlaghi H, 2015, GC/MS Analysis of the Essential Oils from Aerial parts of Prangos latiloba Korov. collected in Northeast Iran. Natural Products Chemistry and Research, 3(158): 2
http://dx.doi.org/10.4172/2329-6836.1000158
Baser K.H.C., Ermin N., Adigüzel N., and Aytac Z., 1996, Composition of the essential oil of Prangos ferulacea (L.) Lindl. Journal of Essential Oil Research, 8(3): 297-298
http://dx.doi.org/10.1080/10412905.1996.9700617
Baser K.H.C., Kürkçüoglu M., and Duman H., 1999, Steam volatiles of the fruits of Prangos bornmuelleri Hub.-Mor. et Reese. Journal of Essential Oil Research, 11(2): 151-152
http://dx.doi.org/10.1080/10412905.1999.9701096
Başer K.H.C., Özek T., Demirci B., and Duman H., 2000, Composition of the essential oil of Prangos heynlae H. Dumanet MF Watson, a new endemic from Turkey. Flavour and Fragrance Journal, 15(1): 47-49
http://dx.doi.org/10.1002/(SICI)1099-1026(200001/02)15:1<47::AID-FFJ869>3.0.CO;2-9
Baytop T., 1999, Tiirkiye’de Bitkiler ile Tedavi-G e 9 mi§- ten Bugüne (Therapy with Medicinal Plants in Turkey-Past and Present). 2nd Ed, Nobel Tip Basimevi, Istanbul, pp.348-349
Bouaoun D., Hilan C., Garabeth F., and Sfeir R., 2007, Antimicrobial activity of the essential oil of the wild plant, Prangos asperula Boiss. Phytotherapie, 5: 129-134
http://dx.doi.org/10.1007/s10298-007-0238-2
Brusotti G., Ibrahim M.F., Dentamaro A., Gilardoni G., Tosi S., Grisoli P., and Vidari G., 2013, Chemical composition and antimicrobial activity of the volatile fractions from leaves and flowers of the wild Iraqi Kurdish plant Prangos peucedanifolia Fenzl. Chemistry & Biodiversity, 10(2): 274-280
http://dx.doi.org/10.1002/cbdv.201200202
European Directorate for the Quality of Medicines, 2008, European Pharmacopoeia 6th Edition
Cox S.D., Mann C.M., Markham J.L., Bell H.C., Gustafson J.E., Warmington J.R., and Wyllie S.G., 2000, The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). Journal of Applied Microbiology, 88(1): 170-175
http://dx.doi.org/10.1046/j.1365-2672.2000.00943.x
Coruh N., Sagdicoglu Celep A.G., and Ozgokce F., 2007, Antioxidant properties of Prangos ferulacea (L.) Lindl., Chaerophyllum macropodum Boiss. and Heracleum persicum Desf. from Apiaceae family used as food in Eastern Anatolia and their inhibitory effects on glutathione-S-transferase. Food Chemistry, 100(3): 1237-1242
http://dx.doi.org/10.1016/j.foodchem.2005.12.006
Davis P.H., 1988, Flora of Turkey and the East Aegean islands (Vol. 10). Edinburgh University Press
Doković D.D., Bulatović V.M., Bozić B.D., Kataranovski M.V., Zrakić T.M., and Kovacević N.N., 2004, 3,5-Nonadiyne isolated from the rhizome of Cachrys ferulacea inhibits endogenous nitric oxide release by rat peritoneal macrophages. Chemical and Pharmaceutical Bulletin, 52(7): 853-854
http://dx.doi.org/10.1248/cpb.52.853
Duran A., Sağıroğlu M., and Duman H., 2005 January, Prangos turcica (Apiaceae), a new species from South Anatolia, Turkey. Finnish Zoological and Botanical Publishing Board, In Annales Botanici Fennici, pp.67-72
Ercan F.S., Hatice B.A.Ş., Murat K.O.Ç., Pandir D., and Öztemiz S., 2013, Insecticidal activity of essential oil of Prangosferulacea (Umbelliferae) against Ephestia kuehniella (Lepidoptera: Pyralidae) and Trichogramma embryophagum (Hymenoptera: Trichogrammatidae). Turkish Journal of Agriculture and Forestry, 37(6): 719-725
http://dx.doi.org/10.3906/tar-1211-15
Grassi P., Novak J., Steinlesberger H., and Franz C., 2004, A direct liquid, non-equilibrium solid-phase micro-extraction application for analysing chemical variation of single peltatetrichomes on leaves of Salvia officinalis. Phytochemical Analysis,15(3): 198-203
http://dx.doi.org/10.1002/pca.769
Kafash-Farkhad N., Asadi-Samani M., and Rafieian-Kopaei M., 2013, A review on phytochemistry and pharmacological effects of Prangos ferulacea (L.) Lindl. Life Science Journal, 10(8s): 360-367
Kılıç C.S., Coşkun M., Duman H., Demirci B., and Başer K.H., 2010, Comparison of the essential oils from fruits and roots of Prangos denticulata Fisch. et Mey. growing in Turkey. Journal of Essential Oil Research, 22(2): 170-173
http://dx.doi.org/10.1080/10412905.2010.9700294
Krist S., Banovac D., Tabanca N., Wedge D.E., Gochev V.K., Wanner J., and Jirovetz L., 2015, Antimicrobial activity of nerolidol and its derivatives against airborne microbes and further biological activities. Natural Product Communications, 10(1): 143-148
Loizzo M.R., Saab A.M., Tundis R., Menichini F., Bonesi M., Piccolo V., and & Menichini F., 2008, In vitro inhibitory activities of plants used in Lebanon traditional medicine against angiotensin converting enzyme (ACE) and digestive enzymes related to diabetes. Journal of Ethnopharmacology, 119(1): 109-116
http://dx.doi.org/10.1016/j.jep.2008.06.003
Loizzo M.R., Tundis R., Menichini F., Saab A.M., and Statti G.A., 2008, Antiproliferative effects of essential oils and their major constituents in human renal adenocarcinoma and amelanotic melanoma cells. Cell Proliferation, 41(6): 1002-1012
http://dx.doi.org/10.1111/j.1365-2184.2008.00561.x
Massumi M.A., Fazeli M.R., Alavi S.H.R., and Ajani Y., 2007, Chemical constituents and antibacterial activity of essential oil of Prangosferulacea (L.) Lindl. Fruits. Iranian Journal of Pharmaceutical Sciences, 3(3): 171-176
Mehregan S.E.S.I., 2003, Chemical Composition of The Essential Oil of Prangos asperula Boiss. Subsp. Haussknechtii (BOISS.) Herrnst. et Heyn Fruits. DARU Journal of Pharmaceutical Sciences, 11(2): 79-81
Mirzaei H.H., and Ramezani Z., 2008, Volatile components of the essential oil of Prangosasperula from West of Iran. Asian Journal of Chemistry, 20(5): 3763
Nazemiyeh H., Razavi S.M., Delazar A., Hajiboland R., Mozaffarian V., Nahar L., and Sarker S.D., 2007, Essential oil composition of the umbels and fruits of Prangos uloptera DC. Natural Product Communications, 2(1): 89-91
Nazemiyeh H., Razavi S.M., Hajiboland R., Delazar A., Esna-Asharii S., Bamdad R., and Sarker S.D., 2007, Composition of the essential oils of Prangosscabra fruits and inflorescence from Iran. Chemistry of Natural Compounds, 43(6): 736-737
http://dx.doi.org/10.1007/s10600-007-0251-6
Novak J., Bahoo L., Mitteregger U., and Franz C., 2006, Composition of individual essential oil glands of savory (Satureja hortensis L., Lamiaceae) from Syria. Flavour and Fragrance Journal, 21(4): 731-734
http://dx.doi.org/10.1002/ffj.1725
Özcan M., Bagci Y., Akgül A., Dural H., and Novak J., 2000, Chemical composition of the essential oil of Prangos uechtritzii Boiss. et hausskn, fruits from turkey, Journal of Essential Oil Research, 12(2): 183-185
Özek G., Özek T., Işcan G., Başer K.H.C., Hamzaoglu E., and Duran A., 2007, Comparison of hydrodistillation and microdistillation methods for the analysis of fruit volatiles of Prangos pabularia Lindl. and evaluation of its antimicrobial activity. South African Journal of Botany,73(4): 563-569
http://dx.doi.org/10.1016/j.sajb.2007.05.002
Park M.J., Gwak K.S., Yang I., Kim K.W., Jeung E.B., Chang J.W., and Choi I.G., 2009, Effect of citral, eugenol, nerolidol and α-terpineol on the ultrastructural changes of Trichophyton mentagrophytes. Fitoterapia, 80(5): 290-296
http://dx.doi.org/10.1016/j.fitote.2009.03.007
Razavi S.M., 2011, Chemical composition and some allelopathic aspects of essential oils of Prangos ferulacea L. Lindl. at different stages of growth. Journal of Agricultural Science and Technology, 14(2): 349-356
Razavi S.M., 2012, Chemical and allelopathic analyses of essential oils of Prangos pabulariaLindl. from Iran. Natural Product Research, 26(22): 2148-2151
Razavi S.M., Nazemiyeh H., Hajiboland R., Kumarasamy Y., Delazar A., Nahar L., and Sarker S.D., 2008, Coumarins from the aerial parts of Prangos uloptera (Apiaceae). Revista Brasileira de Farmacognosia, 18(1): 1-5
http://dx.doi.org/10.1590/S0102-695X2008000100002
Razavi S.M., Nazemiyeh H., Zarrini G., Asna-Asharii S., and Dehghan G., 2010, Chemical composition and antimicrobial activity of essential oil of Prangos ferulacea (L.) Lindl from Iran. Natural Product Research, 24(6): 530-533
http://dx.doi.org/10.1080/14786410802379539
Razavi S.M., Zarrini G., Zahri S., and Mohammadi S., 2010, Biological activity of Prangosuloptera DC roots, a medicinal plant from Iran. Natural Product Research, 24(9): 797-803
http://dx.doi.org/10.1080/14786410802588667
Sadraei H., Shokoohinia Y., Sajjadi S.E., and Ghadirian B., 2012, Antispasmodic effect of osthole and Prangos ferulacea extract on rat uterus smooth muscle motility. Research in Pharmaceutical Sciences, 7: 141–149
Sajjadi S.E., and Mehregan I., 2003, Constituents of essential oil of Prangos asperula subsp. Haussknechtii (Boiss.) Herrnst. et Heyn. fruits. DARU Journal of Pharmaceutical Sciences, 11: 72-79
Sajjadi S.E., Shokoohinia Y., and Gholamzadeh S., 2011, Chemical composition of essential oil of Prangos ferulacea (L.) Lindl. Roots. Chemija, 22(3): 178-80
Sajjadi S.E., Zeinvand H., and Shokoohinia Y., 2009, Isolation and identification of osthol from the fruits and essential oil composition of the leaves of Prangos asperula Boiss. Research in Pharmaceutical Sciences, 4(1): 19-23
Shikishima Y., Takaishi Y., Honda G., Ito M., Takeda Y., Kodzhimatov O.K., and Lee K.H., 2001, Chemical constituents of Prangos tschimganica; Structure Elucidation and Absolute Configuration of Coumarin and Furanocoumarin Derivatives with Anti-HIV Activity. Chemical and Pharmaceutical Bulletin, 49(7): 877-880
http://dx.doi.org/10.1248/cpb.49.877
Tada Y., Shikishima Y., Takaishi Y., Shibata H., Higuti T., Honda G., and Ohmoto Y., 2002, Coumarins and γ-pyrone derivatives from Prangos pabularia: antibacterial activity and inhibition of cytokine release. Phytochemistry, 59(6): 649-654
http://dx.doi.org/10.1016/S0031-9422(02)00023-7
Togashi N., Inoue Y., Hamashima H., and Takano A., 2008, Effects of two terpene alcohols on the antibacterial activity and the mode of action of farnesol against Staphylococcus aureus. Molecules, 13(12): 3069-3076
http://dx.doi.org/10.3390/molecules13123069
Ulubelen A., Topcu G., Tan N., Ölçal S., Johansson C., Üçer M., and Tamer Ş., 1995, Biological activities of a Turkish medicinal plant, Prangosplatychlaena. Journal of Ethnopharmacology, 45(3): 193-197
http://dx.doi.org/10.1016/0378-8741(94)01215-L
Uzel A., Dirmenci T., Celik A., and Arabaci T., 2006, Composition and antimicrobial activity of Prangosplatychlaena and P. Uechtritzii. Chemistry of Natural Compounds, 42(2): 169-171
http://dx.doi.org/10.1007/s10600-006-0069-7
Zouari S., Zouari N., Fakhfakh N., Bougatef A., Ayadi M.A., and Neffati M., 2010, Chemical composition and biological activities of a new essential oil chemotype of Tunisian Artemisia herbaalba Asso. Journal of Medicinal Plants Research, 4(10): 871-880