

研究报告

Research Report

大豆豆荚开裂性状的相关分析及 QTL 定位

罗汝叶^{1,4}, 巩鹏涛^{2,4}, 赵德刚¹, 刘学义³
1 贵州大学生命科学院, 贵州省农业生物工程重点实验室, 贵阳, 550025
2 东北林业大学盐碱地生物资源环境研究中心, 哈尔滨, 150040
3 山西省农科院经济作物研究所, 汾阳, 032200
4 海南省农作物分子育种重点实验室, 海南省热带农业资源开发利用研究所, 三亚, 572025
▲ 通讯作者: gpt321@gmail.com; Lxy1959@126.com ▲ 作者
分子植物育种, 2012 年, 第 10 卷, 第 55 篇 doi: 10.5376/mpb.cn.2012.10.0055
收稿日期: 2012 年 12 月 06 日
接受日期: 2012 年 12 月 07 日
发表日期: 2012 年 12 月 14 日

本文首次以英文发表在 Legume Genomics and Genetics 上。现依据版权所有人授权的许可协议,采用 Creative Commons Attribution License 协议 对其进行授权,用中文再次发表与传播。只要对原作有恰当的引用,版权所有人允许并同意第三方无条件的使用与传播。如果读者对中文含义理解有 歧义,请以英文原文为播。

引用格式(英文):

Luo et al., 2012, QTL Mapping and Analysis of Traits Related to Pod Dehiscence in Soybean, Legume Genomics and Genetics, Vol.3, No.3 14-20 (doi: 10.5376/lgg. 2012.03.0003)

摘 要 大豆豆荚开裂(pod dehiscence)是大豆重要的生育特性,而在生产上豆荚开裂则是影响大豆产量的重要不利因素之一。 本研究利用大豆重组自交系群体(JINF 群体)的 112 个株系,采用复合区间作图法(composite interval mapping, CIM)法,对大豆豆 荚开裂性状(PDH),豆荚厚宽比(RTW)以及完熟天数(DFM) 3 个性状进行相关性分析及 QTL 定位。研究结果表明,PDH 与 RTW 之间呈现出极显著的负相关性(P=0.01, -0.960),与 DFM 呈显著负相关性(P=0.05, -0.740);而 RTW 和 DFM 之间呈现显著正相 关性(P=0.05, 0.867)。QTL 定位分析表明,在 C2 连锁群(即第6染色体)上检测到一个控制豆荚开裂的 QTL 座位,命名为 *qPDH6-1* 连锁,位于标记 *Satt062* 和 *Satt520* 之间,LOD 值为 12.15,遗传距离为 3.1 cM,可解释的表型变异率为 49.44%。对于完熟天 数,我们检测 3 个与之连锁的 QTL 座位,分别命名为 *qDFM6-1*、*qDFM6-2* 和 *qDFM18-1*,分别位于标记 *Sat_062* 和 *Satt520*、 *Satt291* 和 *Satt305* 及 *Satt217* 和 *Satt130* 之间,LOD 值分别为 6.59、2.85 和 2.81,遗传距离为 7.2 cM、12.3 cM 和 0.6 cM,可解 释的表型变异率为 21.77%、9.74%及 7.74%。其中 *qDFM6-1* 座位与 *qPDH6-1* 位于相同的标记区间(*Satt062* 和 *Satt520* 之间); *qDFM6-2* 和 *qDFM18-1* 分别位于第 6 和第 18 染色体的 *Satt291* 和 *Satt305* 之间以及 *Satt217* 和 *Satt130* 之间。我们还检测到 3 个与大豆豆荚厚宽比连锁的 QTL 座位,分别位于第 11、4 和 8 染色体上,命名为 *qRTW11-1、qRTW4-1* 和 *qRTW8-1*,分别位 于标记 *Satt426* 和 *Satt509、Satt361* 和 *Satt399* 及 *Satt187* 和 *Satt377* 之间,LOD 值分别为 3.00、2.77 和 2.14,遗传距离分别 为 10.0 cM、0.4 cM 及 3.7 cM,可解释的表型变异率为 9.03%、8.20%和 7.02%。 **关键词** 大豆(*Glycine max* L); QTL 定位;豆荚开裂性状;豆荚厚/宽比;完熟天数

入证问 八立(Giyune max L.), QIL 定世, 立天开农口扒, 立天开宠比, 九然八致

QTL Mapping and Analysis of Traits Related to Pod Dehiscence in Soybean

Luo Ruye^{1,4}, Gong Pengtao^{2,4}, Zhao Degang¹, Liu xueyi³

1 Guizhou Key Lab of Agro-Bioengineering, College of Life and Science, Guizhou University, Guiyang, 550025, P.R. China

2 Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040, P.R. China

3 Industrial Crop Research Institute, Shaiaxi Academy of Agriculture Sciences, Fenyang, 032200, P.R. China

4 Hainan Key Lab of Crop Molecular Breeding, Hainan Institute of Tropical Agricultural Resources (HITAR), Sanya, 572025, P.R. China

Corresponding author, gpt321@gmail.com; Lxy1959@126.com; 🛛 🖂 Authors

Abstract Pod dehiscence (Pod shattering) (PD) is an important reproductive trait in soybean, while this trait also causes major yield losses in the mechanically harvested soybeans. In this research, QTL mapping and correlation analysis of three related traits (PD trait (PDH), ratio of thickness to width (RTW) and days of full maturity (DFM)) were performeded in 112 strains of soybean recombinant inbred lines (RIL) population (JINF population) by using methods of composite interval mapping (CIM). The results showed that there was an extremely significant negative correlation between PDH and RTW (P=0.01, -0.960), a significant negative correlation between PDH and DFM (P=0.05, -0.740), and also a significant positive correlation between RTW and DFM (P=0.05, 0.867). The results of QTL mapping demonstrated that there was a major QTL controlling PD, designated as *qPDH6-1*, mapped on soybean molecular linkage group (LG) C2 (chromosome 6) between *Sat_062* and *Satt520* with a linkage distance of 3.1 cM. The LOD value was found to be 12.15, and about 49.44% of the total variance was accounted for. Total of 3 QTLs linked to DFM, designated as *qDFM6-1*, *qDFM6-2* and, *qDFM18-1*,

were examined by CIM. *qDFM6-1* was found in the same marker region between *Sat_062* and *Satt520* as *qPDH6-1* on LG C2 (Chromosome 6), with linkage distance of 7.2 cM, LOD value of 6.59, and 21.77% of total variance accountable. *qDFM6-2* was also found on chromosome 6 in the region between *Satt291* and *Satt305* with linkage distance of 12.3 cM, LOD value of 2.85, and 9.74% of the total variance accounted for *qDFM18-1* was mapped on LG A2 (Chromosome 18) in the region between *Satt217* and *Satt130*, with linkage distance of 0.6 cM, LOD value 2.81, and 7.74% of the total variance accounted for. 3 QTLs related to RTW were also identified, designated as *qRTW11-1*, *qRTW4-1*, and *qRTW8-1*, which were mapped in the regions between the SSR markers *Satt426* and *Satt509* on LG 11, between *Satt361* and *Satt399* on LG 4 and between *Satt187* and *Satt377* on LG 8, with the corresponding linkage distances of 7.2 cM, 12.3 cM and 0.6 cM , LOD values 3.00, 2.77 and 2.14, and 9.03%, 8.20% and 7.02% of the total variance accounted for, respectively.

Keywords Glycine max L.; Pod dehiscence; Ratio of thickness to width of pods; Days of full maturity; QTL mapping

研究背景

大豆(Glycine max L.)豆荚开裂(pod dehiscence, PDH)是指大豆在成熟期,豆荚干燥失水之后,豆荚 沿着背部、腹部的缝合线裂开,然后散播出种子的 特性。这种开裂特性是为了更好的繁衍后代经过不 断进化形成的,在野生大豆中这种特性仍然是非常 普遍的。野生大豆在向栽培大豆的驯化过程中,人类 在不断的淘汰这种豆荚开裂特性,以便有效的收获 大豆籽粒。尽管豆荚不开裂或者不易开裂是培育大 豆栽培品种的育种目标之一,但是仍然有许多大豆 品种在延迟收割或天气干燥的情况下,豆荚会自然 裂开。这在大豆生产中会导致大豆产量的损失。

已有科学家采用大豆豆荚的开裂抗性和感性 的亲本品种,构建出重组自交系(recombinant inbred lines, RILs),并且利用这些家系对豆荚开裂特性进行 QTL 定位和分析。Bailey 等(1997)在大豆 F4 代家系 中定位到 12 个与豆荚开裂特性相关 RFLP (Restriion fragment length polymorphism)标记,这些QTL 座位分别位于第2、第15、第16和第19染色体上。 Funatsuki 等(2006)利用复合区间作图法,在大豆重组 自交系中定位到一个大豆豆荚开裂特性相关的 QTL, 将其命名为 *qPDH1*, 该 QTL 座位位于第 16 染色体上的 SSR 标记 Sat_093 和 Sat_366 之间,并 估计出该 QTL 的遗传距离为 2.9 cM; 2008 年, 他 们利用4个不同遗传背景的大豆材料,再次证明了 控制大豆豆荚开裂的QTL座位 qPDH1 位于 Sat_093 和 Sat 366 之间, 表型变异率为 50%, 而且还发现 其中控制豆荚开裂的等位基因,在不同的遗传背景 下具有多重位点(Funatsuki et al., 2008)。Suzuki 等 (2009)认为 gPDH1 座位主要控制大豆豆荚的开裂 过程,而大豆的形态学特征在该过程中并没有发挥 明显的作用。Yamada 等(2009)通过对几个大豆群体 进行分析,发现控制豆荚开裂抗性的基因在不同的 遗传背景下具有一定的差异,但是豆荚开裂特性仍 然是由 qPDH1 座位控制的。Kang 等(2009)定位到 一个主要的以及3个次要的QTL座位,该主要QTL 座位位于第16染色体上,也位于 qPDH1 附近;3 个次要的 QTL 座位分别位于第5、第14 和第10染 色体上,并且认为大豆的豆荚开裂特性在不同的遗 传背景下具有一定的差异性。

在本研究中,我们利用本实验室和山西省农科院 共同构建的大豆重组自交系群体(JINF 群体)(刘学 义等,2003),对大豆豆荚的开裂特性、以及与之可能 关联的两个性状即大豆的完熟天数(dys of full maturety, DFM)和豆荚厚/宽比(rtio of thichness to width, RTW),进行相关分析和 QTL 定位以期深入了解大豆 豆荚开裂特性以及与相关性状的相互关系,为进一 步克隆基因以及分子育种应用奠定基础。

1结果分析

1.1 三个性状之间的相关性分析

对大豆 JINF 群体中的 112 个株系的大豆豆荚的 开裂特性(pod dehiscence, PDH)、大豆的完熟天数 (days of full maturity, DFM)及豆荚厚宽比(ratio of thickness to width, RTW)进行表型测定和统计后,用 SPSS 16.0 软件并对上述 3 个性状进行相关性分析。 结果显示大豆豆荚的开裂特性与其它两个性状(豆荚 的厚/宽比,大豆的完熟天数)之间具有一定的负相关 性。其中,PDH 与 RTW 便有极显著的负相关性 (P=0.01, -0.960); PDH 与 DFM 呈现显著负相关 (P=0.05, -0.740)。而 RTW 与 DFM 之间则呈现显著 正相关(P=0.05, 0.867)。

1.2 大豆豆荚开裂性状的 QTL 定位

对大豆 JINF 群体中 112 个株系的豆荚开裂性 状进行 QTL 定位分析,利用 WinQTLCart 2.5 软件 中的复合区间作图法(composite interval mapping, CIM)设定 LOD 值>2.0,定位到该性状在连锁群 C2 (第6染色体)上有一个 QTL 座位,位于标记 Sat_062 和 Satt520之间,命名为 qPDH6-1,LOD 值达到12.15, 遗传距离为 3.1 cM,可解释的表型变异率为 49.44% (图 1,表 1)。

表 1 对大豆 JINF 群体的 112 个株系中, 3 个与豆荚开裂特性相关性状定位到的 SSR 标记

Table 2 Putative independent SSR markers associated with QTLs for the traits related to the PD in the 112 plants of JINF population

性状	QTL 座位	染色体及位/cM	最近的 SSR 标记	LOD 值	遗传距 (cM)	加性效应	表型变异率
Trait	QTL location	The positionn of	The nearest SSR	The value	Genetic distance (cM)	Additive	$R^{2}(\%)$
		Chromo-some/ cM	marker	of LOD			
豆荚的开裂特性	qPD6-1	6/2.01	Sat_062	12.15	3.1	-2.75	49.44
Pod dehiscence							
(PD)							
豆荚厚/宽比	qRTW11-1	11/0.03	Satt426	3.00	5	-0.014	9.03
The rate of thi-	qRTW4-1	4/52.01	Satt361	2.77	0.5	0.013	8.20
ckness/ Width of	qRTW8-1	8/31.21	Satt187	2.14	0.5	0.012	7.02
the pod (RT-W)							
大豆完熟天数	qTFM6-1	6/0.05	Sat_062	6.59	7	2.57	21.77
The days of full	qTFM6-2	6/22.51	Satt291	2.85	9	1.60	9.74
maturity (TFM)	qTFM18-1	18/42.91	Satt217	2.81	1.5	1.44	7.74

图 1 大豆豆荚开裂性状 QTL 在第 6 染色体上的位置 Figure 1 Location of the QTL for PDH on chromosome 6 in the JINF RIL population

1.3 大豆豆荚的厚宽比的 QTL 定位

我们利用 WinQTLCart 2.5 软件的复合区间作 图法(CIM法)对大豆 JINF 群体的 112 个株系的豆荚 厚宽比进行定位分析,设定 LOD 值>2.0,共检测到 3 个 QTL 座位,分别命名为 *qRTW11-1、qRTW4-1* 和 *qRTW8-1* (图 2,表 1)。

*qRTW11-1*位于连锁群 B1 (第 11 染色体)上的标记 Satt426 和 Satt509 之间, LOD 值为 3.00, 可解释的表型变异率为 9.03%, 遗传距离为 10.0 cM; *qRT-W4-1*位于连锁群 C1 (第 4 染色体)上的标记 Satt361 和 Satt399 之间, LOD 值为 2.77, 可解释的表型变异率为 8.20%, 遗传距离 0.4 cM; *qRTW8-1*位于连锁群 A2 (第 8 染色体)上的标记 Satt187 和 Satt377之间, LOD 值为 2.14, 可解释的表型变异率为 7.02%, 遗传距离 3.7 cM。

1.4 大豆完熟天数的 QTL 定位和分析

采用 WinQTLCart 2.5 软件的复合区间作图法 (CIM 法),对大豆 JINF 群体中的 112 个株系进行完熟 天数的 QTL 定位分析,设定 LOD 值>2.0,共检测到 3 个 QTL 座位,分别命名为 *qDFM6-1、qDFM6-2* 以 及 *qDFM18-1* (图 3,表 1)。

*qDFM6-1*和 *qDFM6-2*座位都位于连锁群 C2 (第6染色体)上,分别位于标记 *Sat_062*和 *Satt520*之 间以及 *Satt291*和 *Satt305*之间,LOD 值分别为 6.59 和 2.85,可解释的表型变异率分别为 21.77%、9.74%, 遗传距离分别为 7.2 cM 和 12.3 cM; *qDFM18-1*座位 则位于连锁群 G (第 18 染色体)上 *Satt217*和 *Satt130* 标记之间,LOD 值为 2.81,可解释的表型变异率为 7.74%,遗传距离为 0.6 cM。

1.5 相关 QTL 座位的基因组信息分析

根据大豆基因组网站(http://www.phytozome. net/cgi-bin/gbrowse/soybean/)上的基因组注释信息, 我们发现 qPDH6-1座位附近有一个具有生长素反 应蛋白活性的基因 Glyma06g00860.1,以及一个编码 水解酶活性的基因 Glyma06g01500.1。在 qRTW4-1 座位附近发现了一个编码生长素转移蛋白基因活 性的 Glyma04g43150.1,以及一个编码多聚半乳糖醛 酸酶的基因 Glyma04g43340.1。在 qDFM18-1座位 附近发现了一个编码多聚半乳糖醛酸酶的基因 Glyma18g16870.1。

图 2 大豆厚宽比性状的 3 个 QTL 在第 11, 第 4 和第 8 染色体上的位置

Figure 2 Location of three QTLs for the ratio of thickness to width on the chromosome 11, 4 and 8 in the JINF RIL population

图 3 大豆完熟天数的 QTL 在第 6 和第 18 染色体上的位置 Figure 3 Location of the QTLs for the trait of the days of full maturity on the chromosome 6 and 18 in the JINF RIL population

2 讨论

在以往的研究中,都认为影响大豆豆荚开裂特性的主效QTL (qPDH1座位)位于第16染色体上(Funatsuki et al., 2006; 2008; Liu et al., 2007; Kang et al., 2009; Suzuki et al., 2010)。Kang等(2009)的研究认为 在不同的大豆品种中,豆荚的开裂程度具有一定的差 异。我们的研究将大豆豆荚开裂性状的QTL (qPD-H6-1)定位在第6染色体上,这与已有的报道都不 一样。这可能与我们采用高代重组自交系群体以及 驯化程度低的农家种"灰布支"有关。

在我们的定位结果中,发现在 C2 连锁群(第6染 色体)上具有多个 QTL 座位。其中,PDH 的一个 QTL 座位 *qPDH6-1* 在第6染色体上的 0.4~3.6 cM 的位 置、DFM 的主效 QTL 座位 *qTFM6-1* 的位置为 0.1~7.3 cM,并且这两个 QTL 都位于 Satt_062 和 Satt520 标记之间。而与 DFM 连锁的 *qTFM6-2* 座位在 第6染色体上的位置为 16.4~28.7 cM,这3个 QTL 座位重叠或相邻,这表明在该染色体上,具有控制大 豆豆荚开裂相关性状的重要基因。

Tsuchiya (1987)的研究表明大豆豆荚的厚度和 宽度之间的比值对其开裂特性有一定的影响,同时 认为,大豆豆荚的厚度和宽度在大豆的豆荚开裂特 性的抗性和感性品种之间,并没有明显的差异。Caviness (1969)认为大豆豆荚的开裂特性还受大豆籽粒 大小的影响,而大豆籽粒的大小也影响着大豆豆荚 的厚宽比的大小。本研究认为大豆豆荚的开裂特性 和豆荚的厚宽比及完熟时间均呈现显著的负相关 性,证实了前人的研究结论。

Arnaud 等(2010)认为生长素在双子叶植物的豆荚的开裂过程中具有重要的作用。而我们通过对该特性所定位到的连锁 QTL 座位进行生物信息学分析时,在第6染色体上的 qPDH6-1座位的附近发现了1个具有生长素反应蛋白活性的基因 Glyma06g-00860.1,而在第4染色体上于豆荚厚宽比连锁的 qRTW4-1座位附近也有一个生长素转移蛋白基因 Glyma04g43150.1,尽管目前对于这2个基因的详细注释并不清楚,但是我们的发现也从一定的程度上认为生长素在大豆豆荚开裂过程中可能具有重要

的作用,为下一步的研究提供了一定的方向。

分子植物有神

Christiansen 等(2002)在大豆中发现多聚半乳糖 醛酸酶(polygalacturonase, PG)与油菜中的该基因具 有一定的差异,但是 Petersen 等(1996)等还是认为 油菜荚果的开裂特性与多聚半乳糖醛酸酶相关,巧 合的是,我们在 qRTW4-1 座位附近发现了 Glyma-04g43340.1 以及第 18 染色体上的 qDFM18-1 座位 附近的 Glyma18g16870.1 基因编码的蛋白都具有多 聚半乳糖醛酸酶活性,这说明 PG 可能在大豆的开 裂过程中也具有一定的作用,也为下一步的研究提 供一定的方向。

水解酶在荚果植物的开裂过程中起着关键的作用,这在荚果的开裂特性的研究中是被普遍接受的(Fry et al., 1992; Agrawal et al., 2002)。而在第6染 色体 *qPDH6-1* 座位附近,我们发现了一个编码水解 酶的基因 *Glyma06g01500.1*。

尽管对于上述基因的详细注释还不够清楚,以 及这些基因具有的相应活性是否与荚果的开裂相 关的性状有关,但是我们的研究表明生长素、相应 的多聚半乳糖醛酸酶以及水解酶在大豆豆荚开裂 特性的调控网络中可能具有的一定的作用。此外, Arnaud 等(2011)等还认为在拟南芥中,由启动子区 域的基因序列来对荚果的开裂特性进行调控,这为 下一步荚果开裂特性的调控网络和基因的具体研 究提供了重要的研究材料和方向。

3 材料与方法

3.1 供试材料

大豆母本:栽培品种"晋豆 23"(Glycine max Merr., CV. Jinbean 23),在大豆成熟之后豆荚不容易裂开; 父本:半野生品种"灰布支"(Glycine max Merr., CV. ZDD2315),大豆成熟之后,荚果因为失水容而易开 裂;以及由它们构建而成的纯合的重组自交系(recombinant inbred lines, RILs)体系(JINF 群体)112 个株 系(刘学义等, 2003)均由山西省农科院经济作物研究 所刘学义研究员提供。

3.2 大豆遗传图谱及 QTL 分析

宛煜嵩等(2005)利用大豆 JINF 群体为材料,整 合了一张具有 227 个 SSRs 标记的大豆遗传连锁图, 后来巩鹏涛等(2006)基于该研究中的 SSRs 标记以 及大豆公共图谱中的标记,重新整合了一张新的图 谱。本研究所使用的遗传图谱是基于巩鹏涛等(2006) 整合的图谱中的 240 个 SSRs 标记组成的大豆分子 遗传图谱。

在 SPSS 16.0 软件 Analyze 下的 Descriptive Statistics 中选择 Frequencies,打开频数统计对话框后, 在 Charts 中选择 Histogram 选项及 With normal curve 后进行各性状的柱形图的正态分布统计。在 SPSS 16.0 软件 Analyze 下的 Correlate 中选择 Bivariate,然后在 Options 中选中 Means and standard deviations 以及 Excludes cases pairwise,再设置 Correlation Coeffecients 选项为 Pearson, Test of Significance 中选择 Two-tailed,然后选中 Flag significant correlations 之后进行 3 个性状之间的相关性分析。各 个性状的 QTL 定位是在 WinQTLCat 2.5 软件(http:// statgen.ncsu.edu/qtlcart/WQTLCart.htm)中导入数据 后,采用 CIM 法,将 Walk speed 设定为 2,然后将 By Manual Input 设定为 11.50,其余为默认值。

3.3 田间种植

供试材料在播种前进行晒种1d,于2011年8 月5日在海南省热带农业资源开发与利用研究所的 防虫网室中进行播种。播种采用20cm×20cm的 方盆进行,每盆装泥土4kg(泥土也同种子一起进 行翻晒一天),播种前在泥土中拌上有机肥。播种时 每个亲本(晋豆23×灰布支)各3盆,112个RILs各 1盆,每盆播种5~6粒种子,待苗长至V4期(第1 个三出复叶节至第2个三出复叶节)进行定苗,每盆 保留3个株系。在苗生长期进行定期的浇水及除草 等相关的管理工作,并在相应的生长期做好数据记 录和采收工作。

3.4 表型测定

3.4.1 豆荚开裂性状的表型评估

待大豆长至 R8 期(Full maturity, 即有 95%的 豆荚的颜色变为黄色, 棕色或者黑色)时, 便采集荚 果, 每个植株采摘 10~20 个不等, 并且在室温环境下 干燥 15 d。

然后进行热处理,具体的处理方法参照 Tukamuhabwa 等(2002)的研究进行,并有所改动,即将烘箱 预热至 80℃后,放入荚果烘 5 h (为了防止豆荚爆裂 影响结果的统计,将荚果放入三角瓶后再放入烘箱), 然后取出三角瓶统计开裂豆荚的个数,并记录其占 总荚果的百分比,该百分比即为该大豆植株的开裂 程度,然后在每个株系的 3 个重复中求平均值,利 用 SPSS 16.0 获得其柱形分布图(图 4)。

图 4 112 个大豆株系中豆荚开裂性状表型评估的分布及标准 曲线

Figure 4 The frequency distribution in 112 soybean plants for the shattering rate

3.4.2 豆荚厚宽比的表型评估

在大豆 R7 期(Beginning maturity)时,采集每个 株系的荚果 10 个,分别测量荚果的总宽度和总厚度。

大豆荚宽的测量参照刘学义等(2003)的测量方法,即将10个荚果按宽度方向连续排列之后,量取总长度,然后求平均值。

大豆荚厚的测量是仿照上述方法,由笔者制造 一个简易装置,使得荚果能够按照其厚度的方向,向 上依次叠加,然后再量取总厚度,之后求平均值。

然后求出每个株系豆荚的厚/宽比,再在每3个重复中求平均值,并用 SPPS 16.0 统计其分布图(图5)。

图 5 112 个大豆株系中豆荚厚宽比的分布及标准曲线 Figure 5 The frequency distribution in 112 soybean plants for the rate of width and thickness of pods (T/W)

3.4.3 大豆完熟天数的表型评估

每个株系从种植到 R8 期的天数即为大豆成熟 所需要的天数,并在每3个重复中求平均值,SPSS 16.0 统计其柱形分布图(图 6)。

图6 112个大豆株系完熟天数的分布及标准曲线 Figure 6 The frequency distribution in 112 soybean plants for the days of full maturity

作者贡献

罗汝叶完成本研究的试验设计和实施,文章初稿的撰写 和内容的修改。巩鹏涛负责本研究的设计,科研及写作方面 的指导,数据分析以及论文写作的修改。刘学义参与本研究 的方案制定和材料应用方面的指导。赵德刚是项目主持人。

致谢

本研究由国家科技支撑项目资助(2007BAD59B05)。作 者感谢海南省热带农业资源开发利用研究所方宣钧博士对 本文的指导和对论文的审读;感谢省资源所技术员黎仲刚对 试验材料的种植和田间管理;两位匿名的同行评审人的评审 建议和修改建议、阅读和审稿。

参考文献

- Agrawal A.P., Basarkar P.W., Salimath P.M., and Patil S.A., 2002, Role of cell wall-degrading enzymes in podshatt-ering process of soybean, *Glycine max* (L.) Merrill, Current Science, 82(1): 58-61
- Arnaud N., Girin T., Sorefan K., Fuentes S., Wood T.A., Lawrenson T., Sablowski R., and Ostergaard L., 2010, Gibberellins control fruit patterning in *Arabidopsis thaliana*, Genes and Development, 24 (19): 2127-2132 http://dx.doi. org/10.1101/gad.593410 PMid:20889713 PMCid:2947765
- Arnaud N., Lawrenson T., Østergaard L., and Sablowski R., 2011, The same regulatory point mutation changed seeddispersal structures in evolution and domestication, Curr. Biol., 21: 1215-1219 http://dx.doi.org/10.1016/j.cub.2011. 06.008 PMid:21737279
- Bailey M.A., Mian M.A.R., Carter T.E., Ashley D.A. and Boerma H.R., 1997., Pod dehiscence of soybean: Identification of quantitative trait loci, The Journal of Heredity 88: 152-154 http://dx.doi.org/10.1093/oxfordjournals.jhered. a023075
- Caviness C.E., 1969, Heritability of pod dehiscence and its association with some agronomic characters in soybeans, Crop Science, 9(2): 207-209 http://dx.doi.org/10.2135/

cropsci1969.0011183X000900020029x

- Christiansen L.C., Dal Degan F., Ulvskov P., and Borkhardt B., 2002, Examination of the dehiscence zone in soybean pods and isolation of a dehiscence-related endopolygalacturonase gene, Plant Cell and Environment, 25(4): 479-490 http://dx.doi.org/10.1046/j.1365-3040.2002.00839.x
- Fry S., Smith R., Renwick K., Martin D., Hodge S., and Matthews K., 1992, Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants, Biochemical Journal, 282: 821-828 PMid:1554366 PMCid:1130861
- Funatsuki H., Hajika M., Hagihara S., Yamada T., Tanaka Y., Tsuji H., Ishimoto M., and Fujino K., 2008, Confirmation of the location and the effects of a major QTL controlling pod dehiscence, *qPDH1*, in soybean, Breeding Science, 58(1): 63-69 http://dx.doi.org/10.1270/jsbbs.58.63
- Funatsuki H., Ishimoto M., Tsuji H., Kawaguchi K., Hajika M., and Fujino K., 2006, Simple sequence repeat markers linked to a major QTL controlling pod shattering in soybean, Plant Breeding, 125(2): 195-197 http://dx.doi. org/10.1111/j.1439-0523.2006.01199.x
- Kang S.T., Kwak M.H., Kim H.K., Choung M.G., Han W.Y., Baek I.Y., Kim M.Y., Van Kyujung, and Lee S.H., 2009, Population-specific QTLs and their different epistatic interactions for pod dehiscence in soybean [*Glycine max* (L.) Merr.], Euphytica 166: 15-24 http://dx.doi.org/10. 1007/s10681-008-9810-6
- Liu B.H., Fujita T., Yan Z.H., Sakamoto S., Xu D.H., and Jun A.B.E., 2007, QTL mapping of domestication-related traits in soyben (*Glycine max*), Annals of Botany, 1-12
- Moncada P., Martínez C.P., Borrero J., Chatel M., Gauch Jr. H., Guimaraes E., Tohme J., and McCouch S.R., 2001, Quantitative trait loci for yield and yield components in an *Oryza saliva×Rryza rufipegon* BC₂F₂ population evaluated in an upland environment, Theor. Appl. Genet., 102: 41-52 http://dx.doi.org/10.1007/s001220051616
- Paterson A.H., Y.R., Li Z.K., Schertz K.F., Doebley J.F., Pinson S.R.M., Liu S.C., Stansel J.W., and Irvine J.E., 1995, Convergent domestication of cereal crops by independent mutations at corresponding genetic loci, Science, 269 (5231): 1714-1718 http://dx.doi.org/10.1126/science.269. 5231.1714 PMid:17821643
- Pedersen M., Sander L., Child R., van Onckelen H., Ulvskov P., and Borkhardt B., 1996, Isolation and characterization of a pod dehiscence zone-specific polygalacturonase from Brassica napus, Plant Molecular Biology, 31: 517-527 http:// dx.doi.org/10.1007/BF00042225

- Suzuki M., Fujino K., Nakamoto Y., Ishimoto M., and Funatsuki H., 2010, Fine mapping and development of DNA markers for the *qPDH1* locus associated with pod dehiscence in soybean, Mol. Breeding, 25: 407-418 http://dx. doi.org/10.1007/s11032-009-9340-5
- Tsuchiya T., 1987, Physiological and genetic analysis of pod shattering in soybean, Japan Agricultural Research Quarterly, 21: 166-175
- Tukamuhabwa P., Rubaihayo P., and Dashiell K.E., 2002, Genetic components of pod shattering in soybean, Euphytica, 125 (1): 29-34 http://dx.doi.org/10.1023/A: 1015711421223
- Umezawa T., Sakurai T., Totoki Y., Toyoda A., Seki M., Ishiwata A., Akiyama K., Kurotani A., Yoshida T., Mochida K., Kasuga M., Todaka D., Maruyama K., Nakashima K., Enju A., Mizukado S., Ahmed S., Yoshiwara K., Harada K., Tsubokura Y., Hayashi M., Sato S., Anai T., Ishimoto M., Funatsuki H., Teraishi M., Osaki M., Shinano T., Akashi R., Sakaki Y., Yamaguchi-Shinozaki K., and Shinozaki K., 2008, Sequencing and analysis of approximately 40 000 soybean cDNA clones from a full-length-enriched cDNA library, DNA Res., 15: 333-346 http://dx.doi.org/10.1093/dnares/dsn024 PMid: 18927222 PMCid:2608845
- Yamada T., Funatsuki H., Hagihara S., Fujita S., Tanaka Y., Tsuji H., Ishimoto M., Fujino K., and Hajika M., 2009, A majior QTL, *qPDH1*, is commonly involved in shattering resistance of soybean cultivars, Breeding Science, 59: 435-440 http://dx.doi.org/10.1270/jsbbs.59.435
- Gong Pengtao, Mu Jingui, Zhao Jinrong, Wang Xiaoling, Bai Yangnian, and Fang Xuanjun, 2006, An integrated soybean genetic linkage map comprising 315 SSRs and 40 AFLPs, Molecular Plant Breeding, 4(3): 309-316
- Liu Xueyi, Wan Yusong, Wang Zhen, Ma Junkui, Shi Hong, Ren Xiaojun, Ren Donglian, Zhang Xiaohu, Li Youying, Feng Fengming, Xu Jun, Li Yongqi, and Fang Xuanjun, 2003, Development of soybean recombinant inbred lines Jinf (Jinbean 23×ZDD2315) and evaluation by SSR molecular marker and agronomic traits, Molecular Plant Breeding, 1(2): 157-177
- Wan Yusong, Wang Zhen, Xiao Yinghua, Lv Bei, and Fang Xuanjun, A soybean genetic linkage map comprising of 227 SSR loci in a soybean RIL population, Molecular Plant Breeding, 3(1): 15-20)