

研究报告

A Letter

雌雄异花甜瓜经 AgNO3 诱导后的雄蕊发育和差异基因表达

李晓明^国,刘志勇^国,冀瑞琴^国,魏鹏^国,冯辉^国 沈阳农业大学园艺学院,沈阳,110866

☑ 通讯作者: fenghuiaaa@263.net; ☑ 作者

分子植物育种, 2011 年, 第9卷, 第10篇 doi: 10.5376/mpb.cn.2011.09.0010

收稿日期: 2010年 09月 17日

接受日期: 2010年12月28日

发表日期: 2011年01月30日

这是一篇采用 Creative Commons Attribution License 进行授权的开放取阅论文。只要对本原作有恰当的引用,版权所有人允许并同意第三方无条件的使用与传播。

引用格式:

李晓明等, 2011, 雌雄异花甜瓜经 AgNO3诱导后的雄蕊发育和差异基因表达, 分子植物育种 Vol.9 No.10 (doi: 10.5376/mpb.cn.2011.09.0010)

摘 要本研究利用 cDNA-AFLP 技术对 AgNO₃ 诱导后的甜瓜雌雄异花系 'RH107' mRNA 进行指纹图谱分析, 320 对引物组合共分离到差异表达的 TDF (transcription derived fragment,转录衍生片段) 131 个。对其中的 28 个 TDF 进行了克隆、测序和序列分析。研究结果表明,在获得的 16 个有效序列中, 6 个与 GenBank 中功能已知基因同源性在 72%和 100%之间,其功能涉及信号传导、转录调控和能量代谢等; 5 个与功能未知蛋白的核苷酸序列或氨基酸序列有同源性; 2 个与已知表达序列标签(EST)有同源性,但功能未知; 3 个未找到同源序列。由此推断, Ag⁺诱导表达差异片段可能分别参与了信号转导、基因表达调控和能量代谢等过程,从而参与调节花器官性别分化。

关键词 甜瓜(Cucumis melo L.); 性别分化; cDNA-AFLP 分析; TDF (转录衍生片段)

Identification of Genes Differentially-Expressed in Sex Differentiation Induced by AgNO₃ in Monoecious Melon (*Cucumis. melo* L.)

Li Xiaoming , Liu Zhiyong , Ji Ruiqin , Wei Peng , Feng Hui Department of Horticulture, Shenyang Agricultural University, Shenyang, 110866, P.R. China Corresponding author, fenghuiaaa@263.net; Authors

Abstract In the present study, the cDNA-AFLP technique was used to make mRNA finger printing, after the female flowers were transformed to the bisexual flowers of the andromonoecious material under the $AgNO_3$ treatment. In the analysis, differentially-expressed 131 TDFs (transcription derived fragment) were segregated with 320 primer pairs. In the 131 TDFs, 28 differentially-expressed TDFs were cloned, sequenced and analyzed. The results showed that there were six sequences identified to be homologous to the previously-reported genes in the GenBank at 72% to 100% in the 16 obtained TDFs sequences. The functions of these genes cover such fields as signal transduction, gene regulation and energy metabolism, etc. Five TDFs were homologous to the nucleotide sequence and the amino acid sequence of the function-unknown proteins. Two were homologous to function-unknown ESTs. Three were unhomologous to any sequence. It was infered that the differentially-expressed fragments which were induced with Ag^+ might take part in such processes as signal transduction, gene expression regulation, and energy metabolism, which regulated the sex differentiation.

Keywords Melon (Cucumis melo L.); Sex Differentiation; cDNA-AFLP Analysis; TDF (transcription derived fragment)

研究背景

瓜类作物的性型表现多样,遗传机制复杂,易 受环境条件影响,一直是科研和生产上关注的热 点。Owens 等(Owens et al., 1980)创制甜瓜新种质— 一全雌系WI998时,采用硝酸银处理幼苗诱雄,用 以解决自交留种问题。此后,Ag⁺成功诱导黄瓜、 苦瓜、西葫芦等作物雌性系雄化(Ando et al., 2001; 杨䶮等, 2004; 戚艺军等, 2004),逐渐成为一项亲本 繁殖和种子生产的成熟技术。甜瓜ACC合成酶基因 *CmACS*-7的克隆,揭示了该基因一处活跃位点上的 C-T突变改变了氨基酸序列,从而决定了雄蕊的发 育与否(Boualem et al., 2008)。Ag⁺处理能够诱导雄 蕊发育,达到雌性系自交留种的目的,但是雌性系 的后代依然保持了雌性系特征,说明Ag⁺处理没有 引起*CmACS*-7基因的突变,却改变了雄蕊发育的最 终结果。因此推测,Ag⁺必然是作用在了多基因协 同控制雄蕊发育的网络系统中的某一个或几个关键点上,但是到底发生在性别决定基因的上游还是下游,以及如何对雄蕊发育过程进行影响的,目前这些机制尚不清楚。

近年差异表达基因研究方法不断丰富和完善, Northern杂交、实时定量RT-PCR、表达序列标签 (Expressed sequence tags, ESTs)、mRNA差异显示 技术、抑制差减杂交(Suppression subtractive hybridization, SSH)、基因芯片(Gene chip)等等,使 得人们能够从转录水平对差异表达基因进行分离 和功能鉴定。cDNA-AFLP是以AFLP为基础的基于 目的片段长度的RNA指纹分析技术,合适的酶切组 合几乎可以检测所有表达的基因,具有重复性好、 假阳性率低等特点(Bachem et al., 1996),已被广泛 用于差异表达基因的分离和鉴定、基因表达特性等 方面的研究,在分离芥菜(Fusco et al, 2005)、大麦 (Leymarie et al, 2007)、番茄(Frank et al., 2009)等作 物发育和逆境响应相关基因方面发挥了巨大作用。

本部分试验以AgNO₃处理雌雄异花甜瓜生长 点,诱导甜瓜雌花雄蕊发育,利用cDNA-AFLP基因 差异表达技术分离与性别分化相关的特异表达转 录衍生片段,为进一步克隆相关基因、揭示甜瓜性 别分化分子机理奠定基础。

1结果与分析

1.1 AgNO3处理对甜瓜性型的影响

雌雄异花试材 'RH107' 经200 mg/LAgNO₃处 理后,对性别表达产生影响,表现为"促雄"作用, 即在基部的1-4朵雌花中生长了3-5枚雄蕊,性别由 雌花转变成两性花(图1)。AgNO₃处理对雄花数目和 节位无显著影响。

1.2 cDNA-AFLP分析

320个引物组合进行选择性扩增,在处理池和 对照池间所扩增出多态性片段为131个,占TDF总数 的2.2%,每对引物平均扩增出差异TDF为0.40个。 在差异TDF中增强表达21个,占总数的16.0%;特 异表达37个(图2),占总数的28.2%。另外73个TDF 在AgNO₃诱导下表达被抑制,占总数的55.7%(图3)。

1.3差异表达片段克隆测序及序列分析

选取典型的特异表达和抑制表达TDF 28条进行回收和二次PCR扩增。多数引物组合产物分子量

图1 雌花经AgNO3诱雄后雄蕊发育 注:1对照;2处理

Figure 1 Morphology of the developed stamens in a female flower reduced with \mbox{AgNO}_3

Note: 1 Control; 2 Treatment

与预期结果相同,而且为单一条带。少数引物组合 出现非特异性弱带,此时切取主带回收,通过T-A 连接到pGM-T载体,重组质粒转化大肠杆菌TOP10 后,经菌体PCR扩增后挑选阳性测序,共得到16个 有效序列。利用NCBI的BLAST工具与dbEST数据 库,进行特异表达基因同源性比较以及功能预测, 结果显示,6个与已知生物学功能的片段具有较高 同源性,其中分别涉及代谢(TDF2-12-3,TDF3-11-6, TDF3-4-2)、信号传导以及细胞膜运动(TDF2-9-4, TDF3-9-1)、转录调控(TDF4-13-6),7个TDF具有 较高同源性但缺少生物学功能,3个在NCBI中未找 到同源序列(表1)。

1.4 RT-PCR分析

为进一步验证cDNA-AFLP结果的可靠性,对部 分差异表达的TDF进行了半定量RT-PCR验证。结果 表明,TDF 2-12-3和TDF 3-9-1在Ag⁺作用下被诱导 表达,RT-PCR和cDNA-AFLP结果吻合(图4),该方 法所得结果可靠。

2讨论

Beyer等(1976)认为Ag⁺是乙烯作用的竞争性抑 制剂,能抑制乙烯的部分氧化代谢途径,进而抑制 乙烯原初反应,最终抑制黄瓜雌花产生。汪俏梅、 戚艺军等(1997; 2004)认为Ag⁺作为乙烯生物活性抑 制剂而抑制乙烯活性,可能是通过竞争结合细胞上 乙烯受体蛋白,起到削弱或降低乙烯作用的效果, 从而诱导苦瓜性型雄化。对于拟南芥乙烯受体研究 李晓明等, 2011, 雌雄异花甜瓜经 AgNO3诱导后的雄蕊发育和差异基因表达, 分子植物育种 Vol.9 No.10 (doi: 10.5376/mpb.cn.2011.09.0010)

图2 部分上调表达的片段

注:箭头所指为抑制表达的TDF,前2个泳道为对照,后2个为处理

Note: The Arrows indicated the up-regulated TDFs, the former 2 lanes are CKs, and the later 2 are treatments

图3 部分下调表达的片段

Figure 3 Down-regulated fragments by cDNA-AFLP analysis

Note: The Arrows indicated the down-regulated TDFs, the former 2 lanes are CKs, and the later 2 are treatments

图4 TDF 2-12-3和TDF 3-9-1的RT-PCR验证 注: 左: RT-PCR; 右: cDNA-AFLP Figure 4 Identification of TDF 2-12-3 and TDF 3-9-1

Note: Left: result by RT-PCR; Right: result by cDNA-AFLP

表明,位于内质网膜上的乙烯受体ETR1蛋白与乙烯 结合必须依赖金属离子亚铜(Cu⁺)作为辅因子才能结 合乙烯(Rodriguez et al, 1999),引起一系列乙烯信号 感知反应。Ag⁺作为乙烯受体竞争性抑制剂,能够 替代亚铜与乙烯结合,但是不能引起乙烯反应,从 而阻断乙烯的信号转导(Schaller et al, 1995a, 1995b)。 Theresa (2002)用AgNO₃和Ag₂S₂O₃分别处理雌雄异 体植物白花蝇子草(*Silene latifolia* Poiret subsp. *alba*) 的雌株,发现这种植物虽然对外源IAA、CTK、GA、 ETH都不敏感,却能分别被两种Ag⁺制剂诱导后促 进雄蕊的发育,在雌花上长出较长的花丝和较大的

Figure 2 Up-regulated fragments by cDNA-AFLP analysis

注:箭头所指为抑制表达的TDF,前2个泳道为对照,后2个为处理

Table 1 The predictive function of the differential expression TDFs					
TDF	比对	登录号	E 值	一致性(%)	同源基因
No.	Blast	Accession	E-value	Similarity (%)	Homologous sequence
2-9-4	BlastX	XP_002300437	9e ⁻¹⁴	85	Populus trichocarpa Integral membrane single C2 domain protein
2-12-3	tBlastX	AY307448	6e ⁻³¹	98	Brassica rapa enolase mRNA, complete cds
3-4-2	Blastn	EU907365	7e ⁻⁴⁶	100	Synthlipsis greggii NADH dehydrogenase subunit F (ndhF) gene,
					partial cds
3-11-6	Blastn	EF208124	6e ⁻³⁶	90	Cucumis sativus putative chloroplast ribulose-1,5-bisphosphate
					carboxylase/oxygenase small subunit (rbcS) mRNA, partial cds
3-9-1	Blastx	XP_002511838	9e ⁻⁰⁹	72	Ricinus communis synaptotagmin, putative
4-13-6	Blastn	EU963406	$1e^{-26}$	78	Zea mays clone 261978 NAC domain-containing protein 67 mRNA
1-7-2	EST	AM727046	5e ⁻³²	97	Cucumis melo subsp. agrestis pat81 root 46 days after pollination
					healthy Cucumis melo subsp. agrestis cDNA, mRNA sequence.
					Function unknown
1-7-3	tBlastX	XM_002328635	7e ⁻¹⁸	71	Populus trichocarpa predicted protein, mRNA. Function unknown
2-5-2	tBlastX	NM_001066121	2.3	60	Oryza sativa (japonica cultivar-group) Os07g0464600. Function
					unknown
2-8-3	tBlastX	AM469485	$3e^{-25}$	87	Vitis vinifera (葡萄) whole genome shotgun sequence, contig
					VV78X053153.8, clone ENTAV 115. Function unknown
3-8-1	Blastx	XP_002283475	2e ⁻¹¹	52	Vitis vinifera Hypothetical protein. Function unknown.
1-5-1	EST	BI740160	8e ⁻⁷⁹	97	Cucumber (黄瓜) SSH cDNA fragments Cucumis sativus cDNA
					clone CsSE1a4, mRNA sequence.
3-6-3	EST	FG227596	8e ⁻⁷⁹	97	Cucurbita maxima (笋瓜, winter squash) phloem cDNA, mRNA
					sequence.
1-4-2	—	—	_	—	No match
1-3-1	—	—	_	—	No match
1-2-1	_	—	_	_	No match

表1 差异表达 TDF 的功能预测

Table 1	The j	predictive	function	of the	differential	expression	TD
---------	-------	------------	----------	--------	--------------	------------	----

花药室,并完成减数分裂产生小孢子,只是花粉不 能发育成熟。Theresa又用乙烯受体抑制剂1-MCP、 乙烯生物合成抑制剂反式-环辛烯、AVG、CoCl₂不 同浓度做进一步的试验证明,这些制剂都能在白花 蝇子草上发挥各自的抑制乙烯作用,但却无一能像 Ag⁺那样产生诱导雄蕊的作用。因此得出结论: Ag⁺ 对于白花蝇子草的诱雄作用不能被解释为乙烯合 成和信号传递受到抑制,暗示了这种效应可能存在 另外的机制。本试验中采用Ag⁺作为甜瓜雌雄异花 系的诱雄剂,客观上起到了诱雄作用,然而未能发 现Ag⁺与乙烯相关基因表达或乙烯释放量之间的规 律(数据未列出),但却发现一些与几类酶具有高度 同源性的TDF被诱导而检测到差异表达,与Theresa 的研究结果存在某种类似。

长期以来Ag⁺被看做许多带有巯基的酶的活性 抑制剂(Snodgrass, 1960),能够抑制质膜和线粒体膜 上ATPases的活性(Knee, 1992)。Ag⁺和巯基的密切关

系对于酶活非常重要,这也说明植物的许多生理过 程能够为Ag⁺所修饰改变,其中的某些过程可能涉 及到雄蕊的发育(Theresa, 2002)。王日升等(2009)采 用cDNA-AFLP对AgNO3诱导下纯雌系苦瓜花蕾发 育的差异表达基因进行了分析,获得一个与植物性 别分化有关的细胞色素P450家族基因有高度同源 性的片段McCYP72A1。本文分离鉴定的差异表达 cDNA片段与几类代谢酶基因的核苷酸序列或氨基 酸序列存在一定程度同源性,推测Ag⁺处理后植物 体很可能从非乙烯的其他途径对Ag⁺的诱导应答, 进而引发了一系列信号传递网络式反应,"无意" 间激活了某些雄蕊发育促进因子或者关闭了某些 雄蕊发育抑制因子。但是,本文所获得的只是少部 分差异片段而不是完整的cDNA,有待于通过RACE 等方法获得全长cDNA,对其表达特性和功能进行 分析和鉴定,才有可能最终明确这些片段与雄蕊发 育之间的确切关系。

3试材与方法 3.1试材及处理方法

雌雄异花品系 'RH107', 日光温室育苗。2~3 叶1心时, 用200 μg/LAgNO₃水溶液喷施全株。喷 施后4、12、24、48和72 h分别取生长点, 液氮速 冻后保存于-80℃备用。以喷施蒸馏水为对照。各 时间点设2次重复。植株开花后调查性型。

3.2 RNA提取及cDNA合成

RNA simple Total RNA Kit (TIANGEN公司, 离心柱型)进行总RNA提取, RQ DNase I (Promega 公司)消化残留的基因组DNA。根据测得的RNA 样品浓度,将RNA分别等量混合,构建2个对照池 和2个处理池。M-MLV RTase cDNA Synthesis Kit (TaKaRa公司)用于双链cDNA的制备,步骤参照说 明书。

3.3 cDNA-AFLP分析

使用*EcoR* I和*Mse* I两种限制性内切酶进行 cDNA双酶切后连接接头,引物E00和M00用于预

表2 用于RT-PCR的引物及序列

Table 2 Primers and their sequences used in semi-quantity RT-PCR

扩增,接头为EcoR I 和Mse I Adaptor。选择性扩 增引物Mse I 30个和EcoR I20个(各带3个选择性碱 基),共计320个引物组合,用于选择性扩增,具 体参照刘志勇等(2008)的方法。

3.4差异片段功能分析

挖带回收,加入PCR体系中,利用相应的引物组合扩增差异条带,进行二次PCR扩增。切取目标条带,AxyPrepTM DNA Gel Extraction Kit (Axygen公司)回收特异片段,连接、转化,上海生工测序。对获得的序列结果,应用在线BLAST程序,在GenBank核酸序列数据库或EST数据库中搜寻同源序列,进行可能的功能分析。

3.5 RT-PCR分析

以内参基因*CMACTIN*作为对照,选取TDF 2-12-3和TDF 3-9-1作为RT-PCR验证的片段,设计 合成特异性引物(表2),由Invitrogen生物工程公司合成。利用Superscript (Invitrogen)逆转录酶,以Oligo dT (18)为逆转录引发引物,逆转录合成cDNA第一链。

14010 2 1 1111010 4110 1110	sequences used in serial quantity for Ferr		
引物代号	序列(5'-3')	退火温度(℃)	
Primer No.	Sequences (5'–3')	Anneal temperature (°C)	
CMACTIN- F	ATTCTTGCATCTCTAAGTACCTTCC	53	
CMACTIN- R	CCAACTAAAGGGAAATAACTCACC		
TDF 2-12-3-L	GAGTCCTGAGTAATGGAGG	50	
TDF 2-12-3-R	GTGTTGCGGGACTGGTTG		
TDF 3-9-1-L	CTGCGTACCAATTCGAATC	50	
TDF 3-9-1-R	GGGACTTACTCAGGACTCA		

作者贡献

李晓明是实验设计和实验研究的执行人,并主要负责论 文写作:刘志勇是实验设计人,同时指导数据分析;冀瑞琴 指导数据分析并提供实验引物;魏鹏参与论文写作;冯辉是 项目的构思者及负责人,指导实验设计,数据分析,论文写 作与修改。全体作者都阅读并同意最终的文本。

致谢

本研究由国家科技支撑计划(2006BAD01A07)、辽宁省 教育厅博士访学计划(辽教发【2009】493号)资助。作者感 谢两位匿名的同行评审人的评审建议和修改建议。本文中提 到了我们实验中涉及的有关试剂供应商和测序服务商,这并 非我们为这些试剂供应商和测序服务商的产品和服务提供 推荐或背书。

参考文献

- Ando S., Sato Y., Kamachi S., and Sakai S., 2001, Isolation of a MADS-box gene (ERAF17) and correlation of its expression with the induction of formation of female flowers by ethylene in cucumber plants (*Cucumis sativus* L.), Planta, 213(6): 943-952
- Bachem C.W.B., Hoeven R.S., and Bruijn S.M., 1996, Visualization of differential gene expression using a novel method of RNA finger Printing based on AFLP: analysis of gene expression during potato tuber development, Plantjournal, 9: 745-753
- Beyer E., 1976, Silverion: a potent antiethylene agent in cucumber and tomato, HortScience, 11: 195-196
- Boualem A., Fergany M., Fernandez R., Troadec C., Martin A., 1069

Morin H., Marie-Agnes S., Fabrice C., Jonathan M.F., Michel P., Michael D., Purugganan, Catherine D., and Abdelhafid B., 2008, A Conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science, 321: 836-838

- Frank G, Pressman E., Ophir R., Althan L., Shaked R., Freedman M., Shen S., and Firon N., 2009, Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response J. Exp. Bot., 60(13): 3891-3908
- Fusco N., Micheletto L., Dal Corso G., Borgato L., and Furini A., 2005, Identification of cadmium-regulated genes by cDNA-AFLP in the heavy metal accumulator *Brassica juncea* L., J. Exp. Bot., 56(421): 3017-3027
- Knee M., 1992, Sensitivity of ATPases to silver ions suggests that silver acts outside the plasma membrane to block ethylene action, Phytochemistry, 31:1093-1096
- Leymarie J., Bruneaux E., Gibot-Leclerc S., Corbineau F., 2007, Identification of transcripts potentially involved in barley seed germination and dormancy using cDNA-AFLP, J. Exp. Bot., 58(3):425-437
- Liu Z.Y., Du Y.C., Wang X.X, Guo Y.M., and Gao J.C., 2008, Identification of differentially expressed genes by cDNA-AFLP approach during heat stress in tomato leaves, Yuanyi Xuebao (Acta Horticulturae Sinica), 35(7): 1011-1016 (刘志勇, 杜永臣, 王孝宣, 国艳梅, 高建昌, 2008, 高温胁迫下番茄叶片差异表达基因的 cDNA-AFLP分析, 园艺学报, 35(7): 1011-1016)
- Owens K.W., Peterson C.E., Tolla G.E., 1980, Induction of perfect flowers on gynoecious muskmelon by silver nitrate and amino-ethoxyvinylglycine, HortScience, 15(5): 654-655
- Qi Y.J, Cheng G.W., Wang C.S., and Wu L.J., 2004, The characteristics and chemical improvement of floral development of *Cucurbita pepo* L., Anhui Nongye Daxue Xuebao (Journal of Anhui Agricultural University), 31(4): 452-455 (戚艺军,程国旺,王春生,吴李君, 2004,西葫 芦花发育特性及其化学改良措施,安徽农业大学学报, 31(4): 452-455)
- Rodriguez F.I., Esch J.J., Hall A.E., Binder B.M., Schaller G.E., and Bleecker A.B., 1999, A copper cofactor for the ethylene receptor ETR1 from *Arabidopsis*, Science, 283: 996-998
- Schaller GE., and Anthony B., 1995a, Ethylene-binding sites generated in yeast expressing the arabidopsis ETR1 gene, Bleecker Science, 270: 1809

- Schaller G.E., Andrea N.L., Michael B.L., Spanbauer J.M., and Anthony B.B., 1995b, The ethylene response mediator ETR1 from arabidopsis forms a disulfide-linked dimer, J. Biol. Chem., 270: 12526-12530
- Snodgrass P.J., B.L. Vallee F.L., and Hockc, 1960, Effects of silver and mercurials on yeast alcohol dehydrogenase, Journal of Biological Chemistry, 235: 504-508
- Theresa F.L., Sabine L., and Sarah R.G., 2002, Silver enhances stamen development in female white campion (*Silene latifolia*), American Journal of Botany, 89 (6): 1014-1020
- Wang Q.M., and Zeng G.W., 1997, The effect of phytohormones and polyamines on sexual differentiation of *momordica charantia*, Yuanyi Xuebao (Acta Horticulturae Sinica), 24(1): 48-52 (汪俏梅, 曾广文, 1997, 激素和多胺对苦瓜 性别分化的影响, 园艺学报, 24(1): 48-52)
- Wang R.S., Li Y.R., Zhou S.M., Zhang M., Fang F.X., and Yang L.T., 2009, Stamen development and gene expression of flower of male-induced bitter melon gynoecious line, Xibao Shengwuxue Zazhi (Chinese Journal of Cell Biology), 31(4): 547-552 (王日升, 李杨瑞, 周生茂, 张曼, 方锋学, 杨丽涛, 2009, 纯雌系苦瓜花经AgNO₃诱雄后的雄蕊发 育和基因表达, 细胞生物学杂志, 31(4): 547-552)
- Yang Y., Tang Y.Q., and Sakamoto M., 2004, Effect of chemical application and temperature on sex expression in bitter gourd (*Monordica charantia* L.), Redai Zuowu Xuebao (Chinese Journal of Tropical Crops), 25(3): 80-84 (杨䶮, 唐燕琼, Sakaoto M., 2004, AgNO₃, GA3和温度对苦瓜 纯雌、雄株系性别分化的影响, 热带作物学报, 25(3): 80-84)

