作者 通讯作者
《分子植物育种》网络版, 2021 年, 第 19 卷, 第 7 篇
收稿日期: 2021年03月01日 接受日期: 2021年03月03日 发表日期: 2021年03月03日
栾晓龙, 史昊, 许波, 张倩男, 刘莉, 2021, 活性炭对秋子梨组培幼苗生根的影响, 分子植物育种 (网络版) 19(7): 1-6 (doi: 10.5376/mpb.cn.2021.19.0007) (Luan X.L., Shi H., Xu B., Zhang Q.N., and Liu L., 2021, Effect of activated carbon on rooting of tissue culture seedlings of qiuzi pea, Fenzi Zhiwu Yuzhong (Molecular Plant Breeding (online)), 19(7): 1-6 (doi: 10.5376/mpb.cn.2021.19.0007))
为了提高秋子梨组培幼苗的生根率,本研究以‘山梨’为试验材料,以秋子梨生根组培培养基(1/2 MS+IBA 0.5 mg/L)为基础,分别添加不同浓度的活性炭(AC):0.25 g/L、0.50 g/L、0.75 g/L、1.00 g/L,分析不同的活性炭含量对秋子梨组培苗生长的影响。结果表明:加入活性炭培养的组培苗在生根率、生根数、根长等方面均显著高于对照组,最适宜秋子梨生根的培养基为1/2 MS+IBA 0.5 mg/L+AC 1.00 g/L,该处理的“山梨”组培苗生根率达到了90%,可明显促进秋子梨组培的生长,该研究结果为提高梨属植物组培幼苗的生根率和成活率提供理论依据,同时为木本植物的快繁体系的建立提供参考。
Effect of Activated Carbon on Rooting of Tissue Culture Seedlings of Qiuzi Pear
Luan Xiaolong Shi Hao Xu Bo Zhang Qiannan Liu Li*
College of Horticulture, Anhui Agricultural University, Hefei, 230036
*Corresponding author, liulireal@ahau.edu.cn
Abstract In order to improve the rooting rate of Qiuzi pear tissue culture seedlings, this study took 'sorb' as experimental material, based on Qiuzi pear rooting tissue culture medium (1/2 MS+IBA 0.5 mg/L), and added different concentrations of activated carbon (AC): 0.25 g/L, 0.50 g/L, 0.75 g/L, 1.00 g/L. The results showed that the rooting rate, rooting number and root length of tissue culture seedlings cultured with activated carbon were significantly higher than those of the control group. The most suitable medium for rooting Qiuzi pear was 1/2 MS+IBA 0.5 mg/L+AC 1.00 g/L, and the rooting rate of the treated "sorb" tissue culture seedlings reached 90%, which could obviously promote the growth of Qiuzi pear tissue culture,The results provide a theoretical basis for improving the rooting rate and survival rate of tissue culture seedlings of pear plants, and provide a reference for the establishment of rapid propagation system of woody plants.
Keywords Qiuzi pear; Tissue culture technique; Activated carbon
秋子梨(Pyrus ussuriensis Maxim.)是我国重要的梨种之一,盛产于我国东北、河北、山东等地。秋子梨的实生苗在果园中常为梨的抗寒砧木,是生产果汁饮料的优良原料,同时也是秋优良的绿化树种。秋子梨的繁殖主要通过种子繁殖和嫁接的方式进行,种子繁殖所需时间较长,后代生长中会出现整齐度不一致,嫁接苗培育时间长,技术复杂,繁殖效率低,容易快速传播病毒,且遗传杂合程度高(徐凌飞等, 2002)。随着现代生物技术的发展,在植物的快速繁殖、品种改良以及种质资源保存等方面可应用植物组织培养技术(肖哲丽和柳金凤, 2011)可以实现优质种质的快速获取,有助于优良品种的推广示范。(苗冉冉等, 2019)。应用植物组织培养技术,可使‘山梨’快速繁殖并实现种苗一致。在传统的植物组织培养技术中,梨的生根诱导效果差,在刘小芳等(2016)的研究中,梨组培幼苗的生根率仅达到33%。孙文英等(2015)在绿宝石梨组织快繁技术研究中发现添加活性炭能够提高绿宝石梨生根质量和生根率。在植物组织培养生根过程中,活性炭(AC)可提供生根的暗环境,有利于根的诱导和根系生长,防止褐变,提高培养体内可溶性蛋白和总糖的含量,吸附植物生长调节剂以及对生根有利的物质(孙占育等, 2010),进而影响培养结果。因此本试验通过向生根培养基中添加不同浓度的活性炭,探究活性炭对组培幼苗生根效率的影响,为提高梨组培幼苗生根效率提供参考和指导。
1结果与分析
1.1不同AC浓度对‘山梨’组培幼苗生长的影响
‘山梨’组培幼苗在生根培养基中第14 d时根系出现红色幼根,随着活性炭浓度的增加,红色幼根数明显增多,在第21 d时,根系明显生长,在第28 d (图1)、35 d (图2)和41 d (图3)时,测定各个培养基中生根率以及生根情况。
图 1 第28 d不同AC浓度‘山梨’组培幼苗生根情况 注: CK: 活性炭浓度为0.00 g/L时, ‘山梨’幼苗生根状况及长度; T1: 活性炭浓度为0.25 g/L时, ‘山梨’幼苗生根状况及长度; T2: 活性炭浓度为0.50 g/L时, ‘山梨’幼苗生根状况及长度; T3: 活性炭浓度为0.75 g/L时, ‘山梨’幼苗生根状况及长度; T4: 活性炭浓度为1.00 g/ L时, ‘山梨’幼苗生根状况及长度 Figure 1 Rooting of ‘sorb’ seedlings with different AC concentrations on the 28th day Note: CK: when the concentration of activated carbon is 0.00 g/L, the rooting status and Length of ‘sorb’ seedling; T1: when the concentration of activated carbon is 0.25 g/L, the rooting status and Length of ‘sorb’ seedling; T2: when the concentration of activated carbon is 0.50 g/L, the rooting status and Length of ‘sorb’ seedling; T3: when the concentration of activated carbon is 0.75 g/L, the rooting status and Length of ‘sorb’ seedling; T4: when the concentration of activated carbon is 1.00 g/L, The rooting status and Length of ‘sorb’ seedlings |
图 2 第35 d不同AC浓度对‘山梨’幼苗生根情况 注: CK: 活性炭浓度为0.00 g/L; T1: 活性炭浓度为0.25 g/L; T2: 活性炭浓度为0.50 g/L; T3: 活性炭浓度为0.75 g/L; T4: 活性炭浓度为1.00 g/L Figure 2 Rooting of ‘sorb’ seedlings with different AC concentrations on the 35th day Note: CK: activated carbon concentration is 0.00 g/L; T1: activated carbon concentration is 0.25 g/L; T2: activated carbon concentration is 0.50 g/L; T3: activated carbon concentration is 0.75 g/L; T4: activated carbon concentration is 1.00 g/L |
图 3 第41 d不同AC浓度对‘山梨’幼苗生根情况 注: CK: 活性炭浓度为0.00 g/L; T1: 活性炭浓度为0.25 g/L; T2: 活性炭浓度为0.50 g/L; T3: 活性炭浓度为0.75 g/L; T4: 活性炭浓度为1.00 g/L Figure 3 Rooting of ‘sorb’seedlings with different AC concentrations on the 41st day Note: CK: activated carbon concentration is 0.00 g/L; T1: activated carbon concentration is 0.25 g/L; T2: activated carbon concentration is 0.50 g/L; T3: activated carbon concentration is 0.75 g/L; T4: activated carbon concentration is 1.00 g/L |
1.2不同AC浓度对‘山梨’苗组培生根率、生根条数的影响
在培养第41天时,T2和T3的生根率都为50%,T4的生根率为90%,CK的生根率最低,为40%,加入活性炭培养的生根苗生根率均高于对照组(图4)。T1的生根率为80%。T4的生根率显著高于CK、T2和T3的生根率(图4)。
图 4 不同AC浓度对‘山梨’幼苗生根率的影响 注: CK: 活性炭浓度为0.00 g/L; T1: 活性炭浓度为0.25 g/L; T2: 活性炭浓度为0.50 g/L; T3: 活性炭浓度为0.75 g/L; T4: 活性炭浓度为1.00 g/L Figure 4 Effects of different AC concentrations on rooting rate of ‘sorb’ seedlings Note: CK: activated carbon concentration is 0.00 g/L; T1: activated carbon concentration is 0.25 g/L; T2: activated carbon concentration is 0.50 g/L; T3: activated carbon concentration is 0.75 g/L; T4: activated carbon concentration is 1.00 g/L |
在不同处理中,梨组培幼苗的生根条数产生了显著性差异,T1的生根条数为2.2条,T2的生根条数为2.2条,T3的生根条数为3.6条,T4的生根条数6.2条,CK的生根条数为0.8条(图5)。随着活性炭浓度的增加,生根条数随之增加。T4显著高于CK、T1和T2。
图 5 不同AC浓度对‘山梨’幼苗生根条数的影响 注: CK: 活性炭浓度为0.00 g/L; T1: 活性炭浓度为0.25 g/L; T2: 活性炭浓度为0.50 g/L; T3: 活性炭浓度为0.75 g/L; T4: 活性炭浓度为1.00 g/L Figure 5 Effects of different AC concentrations on rooting number of ‘sorb’ seedlings Note: CK: activated carbon concentration is 0.00 g/L; T1: activated carbon concentration is 0.25 g/L; T2: activated carbon concentration is 0.50 g/L; T3: activated carbon concentration is 0.75 g/L; T4: activated carbon concentration is 1.00 g/L |
1.3不同AC浓度对‘山梨’组培幼苗根系形态指标的影响
测量第41 d不同处理下‘山梨’幼苗生根平均根长(图6)。从图中可得,T4平均根长具有显著差异,相比其他四组结果来看,根的总长度远远大于其他处理。
图 6 不同AC浓度对‘山梨’幼苗总长度的影响 注: CK: 活性炭浓度为0.00 g/L; T1: 活性炭浓度为0.25 g/L; T2: 活性炭浓度为0.50 g/L; T3: 活性炭浓度为0.75 g/L; T4: 活性炭浓度为1.00 g/L Figure 6 Effects of different AC concentrations on total Length of ‘sorb’ seedlings Note: CK: activated carbon concentration is 0.00 g/L; T1: activated carbon concentration is 0.25 g/L; T2: activated carbon concentration is 0.50 g/L; T3: activated carbon concentration is 0.75 g/L; T4: activated carbon concentration is 1.00 g/L |
随AC浓度的增加,‘山梨’幼苗根系的表面积随之增加。T4根系表面积显著高于其他各处理(图7)。
图 7 不同AC浓度对‘山梨’幼苗表面积的影响 注: CK: 活性炭浓度为0.00 g/L; T1: 活性炭浓度为0.25 g/L; T2: 活性炭浓度为0.50 g/L; T3: 活性炭浓度为0.75 g/L; T4: 活性炭浓度为1.00 g/L Figure 7 Effects of different AC concentrations on the surface area of ‘sorb’ seedlings Note: CK: activated carbon concentration is 0.00 g/L; T1: activated carbon concentration is 0.25 g/L; T2: activated carbon concentration is 0.50 g/L; T3: activated carbon concentration is 0.75 g/L; T4: activated carbon concentration is 1.00 g/L |
随着AC浓度的增加,秋子梨幼苗的体积随之增加(图8)。
图 8 不同AC浓度对‘山梨’幼苗体积的影响 注: CK: 活性炭浓度为0.00 g/L; T1: 活性炭浓度为0.25 g/L; T2: 活性炭浓度为0.50 g/L; T3: 活性炭浓度为0.75 g/L; T4: 活性炭浓度为1.00 g/L Figure 8 Effects of different AC concentrations on seedling volume of ‘sorb’ Note: CK: activated carbon concentration is 0.00 g/L; T1: activated carbon concentration is 0.25 g/L; T2: activated carbon concentration is 0.50 g/L; T3: activated carbon concentration is 0.75 g/L; T4: activated carbon concentration is 1.00 g/L |
2讨论
植物生长发育期间,体内激素处于一个动态变化过程,植物的生长调节剂对组培苗的生长有一定的调节作用。不同品种对生长调节剂的种类与浓度有不同反应,选择适宜的激素配比,才能达到较好的增殖效果(许建兰等, 2008)。邱玉宾等(2015)认为最适宜北美豆梨的生根培养基为MS+TDZ 0.5 mg/L+ABT1# 1.5 mg/L+ sucrose 20 g/L+Agar 4.5 g/L+AC 2.0 g/L,生根率为52.03%。张玉娇等(2009)认为最适宜黄冠梨的生根培养基为1/2 MS+IBA 1.0 mg/L+蔗糖20 g/L,生根率为33%。文慧婷和张翠玲(2007)认为最适宜艳凤梨的生根培养基为1/2 MS+NAA 1.0 mg/L+IBA 1.0 mg/L+AC 3.0 mg/L,生根率为95%。孙清荣等(2001)认为,丰水梨的壮苗培养基为1/2 MS+BA 0.5 mg/L+GA 0.5 mg/L+3%蔗糖。本试验发现,1/2 MS+IBA 0.5 mg/L+AC 1.0 g/L适宜‘山梨’生根培养,生根率为90%。梨属植物组织培养中存在生根难等问题,影响组培苗生根的一个重要因素是生长素的种类及浓度,IBA、IAA和NAA是促进生根常用的生长调节剂。无籽刺梨(姜丽琼等, 2017)和豆梨(李晓刚等, 2012)生根组培苗均选用IBA,但适宜浓度不同。IBA 0.2 mg/L适宜无籽刺梨,IBA 1.5 mg/L适宜豆梨。本试验为‘山梨’幼苗组培生根的研究,通过试验得出:最适宜‘山梨’幼苗生根的培养基为1/2 MS+IBA 0.50 mg/ L+AC 1.00 g/L。
光照条件和培养方法对组培苗不定根诱导也有影响。汤浩茹等(2006)研究发现,前期的暗培养对‘早酥’和‘身不知’的生根诱导有促进作用,对‘巴梨’和‘考密斯’的生根诱导效果较差。本试验添加活性炭提供暗环境,并置于光照条件下,提高了‘山梨’的生根率和生根条数。
杨芳等(2008)诱导秋子梨生根时,培养基为1/2 MS+IBA 0.5 mg/L,生根率为45%,生根条数为3条。王德芬等(2018)诱导秋子梨生根时,培养基为1/2 MS+IBA 0.5 mg/L,生根率为45.5%,生根条数为2.24条。本试验在杨芳和王德芬所用的生根培养基基础上,添加活性炭,活性炭对‘山梨’幼苗生根有促进作用,在生根率、生根数量、平均根长、表面积、体积等方面,添加活性炭的培养基的效果都高于不加活性炭的培养基。当活性炭浓度为1 g/L时(1/2 MS+IBA 0.5 mg/L+AC 1.0 g/L),‘山梨’幼苗生根率高达到90%,生根条数为6.2条。该研究通过添加活性炭,显著提高了‘山梨’组培幼苗组培效率和质量,为果树组织培养技术提供参考。
3试验材料与方法
3.1试验材料
以安徽农业大学园艺学院果树重点实验室培育的 ‘山梨’组培幼苗为试材。
3.2培养条件
本试验采用的活性炭为黑色粉末状,在配置培养基时,若提前加入会结块并附着锅壁,因此活性炭应在培养基融化后,灭菌前加入为宜。在培养基凝固前需要不断震荡,让其在凝固时分布均匀。采用的生根培养基为1/2 MS+IBA (0.5 mg/L)+AC (活性炭浓度梯度分别为0.25 g/L, 0.50 g/L, 0.75 g/L, 1.00 g/L)。培养基在灭菌后使用(在121 ℃灭菌锅内灭菌20 min)。培养温度为25 ℃,光照度2000 lx,光照时间为24 h/d。
3.3试验设计
试验采用单因素随机区组试验设计,试验于2020年11月在进行。取同一时期同一生长状况的‘山梨’组培苗,将‘山梨’组培苗进行增值培养,每瓶接种2株,共接种50瓶。以‘山梨’组培苗为材料,剪取叶柄三分之一以上部位,在超净工作台上,将叶柄用手术刀45°斜切,将剪好的‘山梨’幼苗放入含有不同浓度活性炭的生根培养基中进行培养。
3.4指标测定
使用电子游标卡尺,根系测定仪(INSTRUMENTS REGENT Scanner CaLibrated for Image AnaLysis with REGENT INSTRUMENTS Software)进行测定和分析。
生根率(%)=(生根的茎段数/接种的茎段数)×100%。
生根条数(条)=茎段生的总根数/生根的茎段数。
平均根长(cm)=总根长/生根总株数。
3.5数据分析
运用SPSS程序软件(IBM SPSS statistics 26)进行数据统计分析,采用Duncan法进行方差分析和多重比较(p<0.05)。
作者贡献
栾晓龙是本试验研究的执行者,进行数据整理及论文初稿写作;史昊参与试验设计、试验结果分析,许波、张倩男参与部分试验研究,刘莉是项目负责人,指导试验研究的设计和论文修改,全体作者都阅读并同意最终的文本。
致谢
本研究由安徽省大学生创新创业项目(S202010364243; XJDC2020399)和国家现代农业产业技术体系建设专项(CARS-29-14)共同资助。
Xu L.F., Ma F.W., Wang Z.Z., Ren X.L., and Cao X.Y., 2002, In vitro culture and plant regeneration of pear leaves, Yuanyi Xuebao (Acta Horticulturae Sinica), (4):367-368. (徐凌飞, 马锋旺, 王喆之, 任小林, 曹晓雁, 2002, 梨叶片离体培养和植株再生, 园艺学报, (4): 367-368.)
Xiao Z.L., and Liu J.F., 2011, Advances in planttissue culture and new technology application, Ningxia Nonglin Keji (Ningxia Journal of Agriculture Forestry Science Tecnology), 52(1): 13-14, 47. (肖哲丽, 柳金凤, 2011, 植物组织培养的研究进展及新技术应用, 宁夏农林科技, 52(1):13-14, 47.)
Miao R.R., Qiao Y.L., Wu R.Z., Wang L., Shi X.X., and Du G.Q., 2019, Tissue culture and rapid propagation of 'jinxiangmi' and 'Bali', Fenzi Zhiwu Yuzhong (Molecular Plant Breeding), 17(7): 2297-2302. (苗冉冉, 乔月莲, 吴沅洙, 王莉, 师校欣, 杜国强, 2019, ‘津香蜜’和‘巴梨’组织培养快速繁殖, 分子植物育种, 17(7): 2297-2302.)
Liu X.F., Feng J.R., Liang X.T., Lv W.J., Li W.H., and Fan X.M., 2016, Research on tissue culture of Korla fragrant pear, Shandong Nongye Kexue (Shandong Agricultural Sciences), 48(5): 9-13. (刘小芳, 冯建荣, 梁晓桐, 吕文娟, 李文慧, 樊新民, 2016, 库尔勒香梨组织培养的研究, 山东农业科学, 48(05): 9-13.)
Sun W.Y., Liu R.N., Zhang S.S., Huang H.F., He A.L., and Yang H.T., 2015, Rooting technique of ‘Lvbaoshi’ pear tissue culture seedling,Beifang Yuanyi (Northern Horticulture), (18): 116-118. (孙文英, 刘荣宁, 张守仕, 黄海帆, 贺爱莉, 杨海蛟, 2015, ‘绿宝石’梨组培苗生根培养技术, 北方园艺, (18): 116-118.)
Sun Z.Y., Ssun Z.Q., and Cao B., 2010, Role of activated carbon in promoting rooting of tissue culture seedlings, Hunan Nongye Kexue (Hunan Agricultural Science), (7): 3-5. (孙占育, 孙志强, 曹斌, 2010, 活性炭在促进组培苗植物生根中的作用, 湖南农业科学, (7): 3-5.)
Xu J.L., Ma R.J., Yu M.L., and Sen.Z.J., 2008, Study on Tissue Culture Propagation Technology of Damas 1869 Plum, Guoshu Xuebao (Journal of Fruit Science), (5): 740-743, 785. (许建兰, 马瑞娟, 俞明亮, 沈志军, 2008, Damas 1869李组培繁殖技术研究, 果树学报(5): 740-743, 785.)
Qiu Y.B., Kang X.Y., Yang Z.Y., Li T., and Zhao Q.Z., 2015,Study on tissue culture and rapid propagation technology of North American bean pear, Nongxue Xuebao (Journal of Agronomy), 5(12): 64-69. (邱玉宾, 康晓瑜, 杨志莹, 李田, 赵庆柱, 2015, 北美豆梨组培快繁技术研究, 农学学报, 5(12): 64-69.)
Zhang Y.J., Lin J., Cong Y., Li X.G., and Chang Y.H., 2009, Study on tissue culture and rapid propagation technology of Huangguan pear, Jiangsu Nongye Kexue (Jiangsu Agricultural Science), (3): 35-36. (张玉娇, 蔺经, 丛郁, 李晓刚, 常有宏, 2009, 黄冠梨组织培养与快繁技术研究, 江苏农业科学, (3): 35-36.)
Wen H.T., and Zhang C.L., 2007, Study on tissue culture and rapid propagation technology of pineapple, Xiandai Nongye Keji(Modern Agricultural Science and Technology), (4): 10, 14. (文慧婷, 张翠玲, 2007, 艳凤梨组培快繁技术研究, 现代农业科技, (4): 10, 14.)
Sun Q.R., Sun H.Y., and Liu Q.Z., 2001, Studies on tissue culture and rapid propagation of Fengshui Pear, Luoye Guoshu (Deciduous Fruits), (4): 4-5. (孙清荣, 孙洪雁, 刘庆忠, 2001, 丰水梨的组培快繁研究, 落叶果树, (4): 4-5.)
Jang L.Q., Li W.J., Xiao Q.G., Chen W.L., Xu Z.P., Li L., and Fu M., 2017, Study on tissue culture and rapid propagation technology of seedless Rosa roxburghii, Linye Keji Tongxun (Forestry Science and Technology Newsletter), (4): 33-36. (姜丽琼, 李文俊, 肖前刚, 陈文灵, 徐志萍, 李路, 付梅, 2017, 无籽刺梨的组培快繁技术研究, 林业科技通讯, (4): 33-36.)
Li X.G., Wang H.W., Yang Q.S., Lin J., Wang Z.H., Sheng B.L., Li H., Wang H., and Chang Y.H., 2012, Low vitrification tissue culture and rapid propagation technology of bean pear, Jiangsu Nnongye Kexue (Jiangsu Agricultural Science), 40(12):54-56. (李晓刚, 王宏伟, 杨青松, 蔺经, 王中华, 盛宝龙, 李慧, 王宏, 常有宏, 2012, 豆梨低玻璃化组培快繁技术, 江苏农业科学, 40(12): 54-56.)
Tang H.R., Liu C.Q., Luo Y., and Wang X.R., 2006, Effects of medium and culture conditions on rooting of four pear genotypes in vitro., Guoshu Xuebao (Fournal of Fruit Science), (2):283-286, 316. (汤浩茹, 刘翠琼, 罗娅, 王小蓉, 2006, 培养基和培养条件对4个梨基因型试管苗生根的影响.果树学报, (2): 283-286, 316.)
Yang F., Wang Y., Xu X.F., Han Z.H., and Li T.Z., 2008, Study on Leaf Plant Regeneration of Qiuzi Pear, Zhongguo Guoshu (China Fruits), (3):13-16, 78. (杨芳, 王忆, 许雪峰, 韩振海, 李天忠, 2008, 秋子梨叶片植株再生研究, 中国果树, (03): 13-16, 78.)
Wang D.F., Zhang M., Li D.L., Wang R., Ma C.H., and Song J.K., 2016, Construction of efficient regeneration system of Qiuzi pear leaves, Beifang Yuanyi (Northern Horticulture), (4): 97-101. (王德芬, 张梅, 李鼎立, 王然, 马春晖, 宋健坤, 2016, 秋子梨叶片高效再生体系的构建, 北方园艺, (4): 97-101.)