研究报告/Research Report

非生物胁迫对水稻抽穗期的影响  

孟祥雪1 , 彭永彬2 , 郑崇珂2 , 谢先芝1,2 , 和亚男2
1山东师范大学生命科学学院, 济南, 250014;
2山东省水稻研究所, 济南, 250100
作者    通讯作者
《分子植物育种》网络版, 2021 年, 第 19 卷, 第 8 篇   
收稿日期: 2021年03月03日    接受日期: 2021年03月03日    发表日期: 2021年03月10日
© 2021 BioPublisher 生命科学中文期刊出版平台
本文首次发表在 《分子植物育种》(ISSN1672-416X,CN46-1068/S)上。现依据版权所有人授权的许可协议,采用 Creative Commons Attribution License,协议对其进行授权,再次发表与传播。只要对原作有恰当的引用, 版权所有人允许并同意第三方无条件的使用与传播。
推荐引用:

孟祥雪, 彭永彬, 郑崇珂, 谢先芝, 和亚男, 2021, 非生物胁迫对水稻抽穗期的影响, 分子植物育种(网络版), 19(7): 1-6 (doi: 10.5376/mpb.cn.2021.19.0007) (Meng X.X., Peng Y.B., Zheng C.K., Xie X.Z., and He Y.N., 2020, Evolution of Yield, Effects of Abiotic Stresses on Rice Heading Date, Fengzi Zhiwu Yuzhong (Molecular Plant Breeding (online)), 19(7): 1-6 (doi: 10.5376/mpb.cn.2021.19.0007))

摘要

水稻(Oryza sativa L.)是重要的粮食作物,其产量与粮食安全和经济发展密切相关。水稻抽穗期是一个重要的农艺性状,对水稻播种季节、产量和适宜种植地区有着极其重要的影响。水稻抽穗期的调控涉及了一系列的基因,而且这些基因彼此之间存在着复杂的相互调控关系。盐、干旱和温度等非生物胁迫严重影响水稻抽穗期,解析非生物胁迫对水稻抽穗期的影响及其分子机理,有助于抗逆水稻新品种的选育。本文梳理了水稻抽穗期调控的分子机制,以及非生物胁迫对水稻抽穗期的影响,以期为水稻耐逆品种的选育提供理论指导。

关键词
水稻;抽穗期;基因;调控网络;非生物胁迫

Effects of Abiotic Stresses on Rice Heading Date

Meng Xiangxue 1 Peng Yongbin 2 Zheng Chongke 2 Xie Xianzhi 1,2* He Yanan 2*

1 College of Life Science, Shandong Normal University, Ji’nan, 250014; 2 Shandong Rice Research Institute, Ji’nan, 250100

* Corresponding authors, xzhxie2010@163.com; hyn2013nice@163.com

Abstract As one of the most important staple food crops, rice (Oryza sativa L.) yield influences food security and economic development. Heading date is one of agronomic traits in rice, and directly controls seed-sowing stage, yield, and regional adaptability. Heading date is a complex trait controlled by multiple genes. Moreover, there are complicated interactions among these genes. Heading date is significantly influenced by abiotic stresses, such as salt, drought and temperature. Exploring the effects of abiotic stresses on the rice heading date and the underlying molecular mechanism contributes to breeding new varieties with high abiotic stress-tolerance. Herein, we discuss the molecular mechanism controlling rice heading date and the effects of abiotic stresses on heading date, which provides important information for breeding rice new varieties with high resistance.

Keywords Rice; Heading date; Gene; Regulatory network; Abiotic stress

 

水稻(Oryza sativa L.)是重要的粮食作物之一,抽穗期是水稻重要的农艺性状,是控制水稻产量的重要因素,种植具有适宜抽穗期的水稻品种可以充分利用光温资源从而增加粮食产量(Ye et al., 2018)。非生物胁迫不仅直接降低水稻产量,而且也影响水稻的抽穗期。水稻抽穗期的调整或者微调可以通过增加水稻复种提高土地利用率、实行水稻与其他经济作物精确轮作制、获得针对特定消费者的高价格大米以及通过避免经常遇到生物/非生物胁迫提升稻田管理水平等方式提高农民收益(Kim et al., 2018)。因此,探讨非生物胁迫对水稻抽穗期的影响,可以指导稳产高产的抗逆水稻新品种,对于保障国家粮食安全具有重要的意义。

 

1水稻抽穗期调控的分子机制

水稻抽穗期是由主效基因和微效基因共同控制的数量性状。目前,已报道的水稻抽穗期相关的数量性状位点(quantitative trait locus, QTL)有700多个(http://www.gramene.org/qtl),在水稻12条染色体上均有分布。通过图位克隆及反向遗传学技术克隆的水稻抽穗期调控基因已经超过40多个(Kim et al., 2018)。水稻抽穗期是多基因、多因素共同作用的结果,光照长度是影响开花的最重要因素。水稻是短日照(short day, SD)植物,短日照促进抽穗,长日照(long day, LD)抑制抽穗(Zheng et al., 2019)。成花素是一个重要的内源信号,在叶中合成,转运至茎尖分生组织调控开花。Hd3a (Heading date-3a)和RFT1 (Rice flowering locus T 1)是水稻的成花素基因,其编码的蛋白质都是促进水稻抽穗的激活因子,Hd3a与14-3-3蛋白结合,转移到细胞核中与转录因子OsFD1组成成花素激活复合体(FAC),激活OsMADS15的表达,促进抽穗(Taoka et al., 2011)。许多环境信号可以诱导或者抑制成花素的表达而调控抽穗期。水稻中有两条调控通路调控开花素的合成:条是以Hd1 (Heading date 1)为核心的Hd1-Hd3a调控通路;另外一条是以Ehd1 (Early heading date 1)为核心的Ehd1-Hd3a/RFT1调控通路。

 

1.1 Hd1-Hd3a调控通路

Hd1-Hd3a调控通路在拟南芥(Arabidopsis thaliana)和水稻中都存在。Hd1是一个含有CCT (Constans, Constans -like, Timing of cab1)结构域的B-box锌指蛋白,在SD条件下上调Hd3a的表达,从而促进抽穗,在LD条件下抑制Hd3a的表达从而延迟抽穗(Hayama et al., 2003)。SD条件下,OsGI (Oryza sativa GIGANTEA)促进Hd1表达。水稻的NF-YB转录因子Ghd8/DTH8 (Days to heading 8)在LD条件下通过与Hd1相互作用,促进Hd3a的H3K27me三甲基化,抑制Hd3a的表达;但在SD条件下DTH8的上述调控作用途径不存在(Du et al., 2017)。

 

1.2 Ehd1-Hd3a/RFT1调控通路

Ehd1-Hd3a/RFT1 调控通路相对来说更为复杂,在拟南芥中不存在该通路。无论LD还是SD条件下,Ehd1都激活Hd3aRFT1的表达。Ehd1蛋白D-D-K基序中天冬氨酸磷酸化促进其同源二聚化,刺激靶基因的转录。Ehd1-Hd3a/RFT1 调控通路根据调控机制可以分为两条路径:(1)通过调控Ehd1蛋白活性调控抽穗期,如A型响应调节因子OsRR1 (Oryza sativa response regulator 1)与Ehd1蛋白结合形成的复合物能够抑制Ehd1蛋白的活性,推迟抽穗期(Cho et al., 2016)。(2)通过调控Ehd1的转录水平影响抽穗期。调控水稻株高、每穗粒数及抽穗期的多效性基因Ghd7 (Grains Height Date 7),抑制Ehd1表达,LD条件Ghd7被诱导表达,导致Hd3aRFT1的表达下降,延迟抽穗,而SD条件下Ghd7表达量低,Ehd1的受抑制状态解除,从而促进Hd3a的表达促进抽穗(Xue et al., 2008)。有些基因通过调控Ghd7-Ehd1途径的表达而影响抽穗期,如光敏色素A (phyA)和光敏色素B (phyB)可以通过调控Ghd7的表达和稳定调控抽穗期(Zheng et al., 2019)。有些基因不通过Ghd7而是直接调控Ehd1的表达,如转录因子SIP1(SDG723/OsTrx1/OsSET33 Interaction Protein)与Ehd1启动子结合,招募OsTrx1 (Oryza sativa Trithorax1)特异性靶向Ehd1,完成Ehd1的H3K4me3的修饰,增加Ehd1表达,从而促进开花,而且OsTrx1甲基转移酶活性需要OsWDR5a辅助,OsWDR5a与OsTrx1相互作用,提高OsTrx1催化H3K4me3修饰效率(Jiang et al., 2018a; Jiang et al., 2018b)。有些基因对Ehd1的调控依赖于不同光周期,如DTH8在LD下抑制Ehd1的表达,SD下促进Ehd1的表达;Ghd7.1 (OsPRR37/DTH7)在LD下抑制Ehd1的表达,在SD下不调控Ehd1的表达;Ehd2/Osld1/RID1 (Early heading date 2)、Ehd3 (Early heading date 3)、Ehd4 (Early heading date 4)无论LD还是SD都激活Ehd1的表达;OsMADS50在LD下通过抑制OsLFL1而促进Ehd1的表达,促进抽穗,SD下不调控抽穗期(Matsubara et al., 2008; Park et al., 2008; Ryu et al., 2009; Matsubara et al., 2011; Yan et al., 2011; Gao et al., 2013; Gao et al., 2014)。OsMADS51 (MADS-box gene 51) SD、LD下正调控Ehd1的表达,但是LD下对抽穗期调控不明显(Kim et al., 2007)。

 

1.3两条通路之间的联系

在SD条件下,Hd1Ehd1在激活途径中正向调节Hd3a,促进开花,Hd1还可以对LD条件下的Ghd7转录进行正调控(Song et al., 2012)。Nemoto等(2016)报道了两条调控路径中的关键基因Hd1Ghd7之间的相互作用,Ghd7-Hd1蛋白在体内形成复合物,该复合物特异性结合Ehd1中的顺式调节区并抑制其表达,从而推迟抽穗期(Nemoto et al., 2016)。Hd1蛋白还能协同OsHAPL1DTH8Hd1HAP复合体以及常规转录因子调控靶基因的表达,进而通过调控Ehd1的表达调节Hd3aRFT1的表达,影响水稻抽穗(Zhu et al., 2017)。说明两条通路不是完全独立的,存在一定的联系。

 

此外研究还发现一些独立于两条调控通路之外的基因。如OsCO3 (Oryza sativa CONSTANS-Like 3)和DTH2 (Days to heading 2)通过直接调控两个成花素基因Hd3aRFT1的表达影响抽穗期,OsCO3在SD条件下正调控成花素基因表达从而促进抽穗,DTH2在LD条件下通过正调控成花素基因的表达而促进抽穗(Kim et al., 2008; Wu et al., 2013)。抽穗期抑制因子DHD4 (Delayed Heading Date 4)可与14-3-3竞争,与OsFD1相互作用,影响Hd3a-14-3-3-OsFD1三蛋白FAC复合物的形成,导致OsMADS14OsMADS15的表达降低,最终推迟开花。水稻抽穗期的调控网络非常复杂,涉及到很多基因,有些基因的调控机理还不清楚(蒋丹等, 2018)。

 

2非生物胁迫对水稻抽穗期的影响

水稻的成花起始是一个由基因和环境共同调控的复杂过程。盐、干旱、低温等非生物胁迫均影响水稻抽穗期。在特定的环境条件下,适当的抽穗期可以保证高产。水稻抽穗很大程度上依赖于对环境变化的精确感知,本论文总结整理了国内外非生物胁迫对水稻抽穗期影响的相关研究成果。

 

2.1干旱胁迫对水稻抽穗期的影响

干旱是重要的非生物胁迫之一,严重影响水稻的产量和品质。水稻是耗水量大的作物,总耗水量超过农业用水量的65%,水稻生产对水分的需求与水资源短缺矛盾逐年加剧(李其勇等, 2021)。进一步了解干旱胁迫条件下,水稻如何调节抽穗期以响应水分供应,对于耐旱、优质水稻品种的培育及稻田管理具有重要意义。

 

干旱胁迫下,许多植物启动干旱逃避反应,即通过缩短生命周期,提前开花来逃避干旱胁迫。之前的研究显示水稻不同于拟南芥、大麦(Herdeum vulgare L.)等植物,干旱延迟水稻抽穗期(Galbiati et al., 2016)。最近的研究显示,水稻根据干旱程度的不同而调整抽穗期,当水稻生长早期旱情不那么严重时触发干旱逃避反应,提前抽穗,干旱严重时,抽穗期推迟(Du et al., 2018)。Galbiati等(2016)发现在长日或者短日条件下,严重干旱均延迟水稻抽穗期,推测严重干旱对抽穗期的影响与日照长度无关。此外,Hd1OsGI并不是干旱胁迫信号和抽穗期的整合因子,Ehd1在干旱胁迫和光周期信号的整合中起着关键作用,干旱抑制Ehd1Hd3aRFT1的转录,最终导致推迟开花。Ehd1的负调控因子Ghd7在转录水平上对非生物应激信号有应答,长日和短日条件下干旱胁迫处理的幼苗中Ghd7的mRNA水平迅速降低,而且Ghd7的过表达株系对干旱敏感,Ghd7的敲除植株抗旱性增强,这说明干旱并不是通过Ghd7抑制Ehd1的表达而延迟抽穗期(Weng et al., 2014; Galbiati et al., 2016)。bZIP转录因子OsABF1是与光周期无关的成花转变抑制因子,干旱胁迫增强OsABF1OsWRKY104的转录,进而激活Ehd1的未知抑制因子的表达,抑制Ehd1表达从而延迟水稻抽穗期(Zhang et al., 2016)。Du等(2018)发现水稻生长早期低水分亏缺处理(low water-deficit treatment, LWT)诱导ABA的积累,ABA信号调控许多与抽穗期相关的基因的表达,促进抽穗。Du等还发现一些光受体、生物钟组分以及开花相关基因PHYBOsTOC1、和Ghd7对LWT引起依赖ABA的干旱逃避响应,而OsGIOsELF3OsPRR37OsMADS50对LWT引起不依赖于ABA的干旱逃避响应(Du et al., 2018)。Wang等(2020)发现RCN1 (RICE CENTRORADIALIS 1)的突变体抽穗期提前,并且在干旱胁迫处理下,抽穗期延迟时间明显比野生型短,说明RCN1参与了干旱诱导的抽穗期延迟,推测干旱胁迫通过ABA信号途径诱导RCN1表达,RCN1可以与Hd3a/RFT竞争结合14-3-3从而抑制了Hd3a的蛋白活性,导致抽穗期延迟(Wang et al., 2020)。OsWOX13过表达植株抗旱性增强,抽穗期提前,可能参与干旱逃避反应(Minh-Thu et al., 2018)。

 

2.2盐碱胁迫对水稻抽穗期的影响

水稻是典型的甜土植物,土壤盐碱化是影响全球特别是在沿海地区水稻生产的主要制约因素之一。梁正伟等(2004)通过盆栽实验发现盐碱胁迫推迟抽穗期,而且水稻抽穗期随着盐碱度的提高,其推迟的天数越长,并且不耐盐碱的早熟品种比耐盐碱的中晚熟品种抽穗晚(梁正伟等, 2004);张鑫等(2020)通过不同品种田间实验的研究发现,相对于轻度盐碱胁迫,重度盐碱胁迫下抽穗期推迟显著(张鑫等, 2020)。本研究调查了多个在盐碱地(山东东营, E1185, N3815)种植的粳稻品种的抽穗期,结果表明,在低盐度(0.2%~0.3%)下,抽穗期较淡水种植条件下提前,但是在高盐度(0.5%)下,抽穗期延迟(结果未报道)。但是盐碱胁迫影响抽穗期的分子机理目前研究较少,目前已经鉴定了一些同时参与抽穗期调控和盐胁迫耐性的基因:光敏感蛋白OsHAL3的过量表达可以提高植物的耐盐性,同时OsHAL3与开花调控因子Hd1互作,结合Hd3a启动子,正调控Hd3a表达,进而促进水稻开花(Su et al., 2016);OsmiR393高表达水稻植株抽穗期提前,耐盐性降低(Xia et al., 2012)。但这些基因是否参与盐胁迫调控下抽穗期的改变还有待进一步研究。

 

2.3温度胁迫对抽穗期的影响

水稻对温度波动非常敏感,高温条件下,水稻抽穗期提前;低温胁迫下,水稻抽穗期推迟。控制水稻粒数、株高和抽穗期的转录因子Ghd8的高表达推迟水稻抽穗期,增强水稻的低温耐性(Wang et al., 2019)。通过系统地分析参与光周期开花调控途径的几个关键基因(Hd3a, RFT1, Ehd1, Ghd7, RID1/Ehd2/OsId1, Se5)在不同温度和光周期处理下光周期不敏感突变体和野生型中的表达模式,发现Ehd1-Hd3a/RFT1通路在光周期和温度开花调控途径中是共同的和保守的:在低温(23 ℃)下Ehd1Hd3aRFT1的表达显著降低,表明Ehd1Hd3aRFT1转录的抑制是低温条件下延迟开花的重要原因;在LD条件及低温下Ghd7 mRNA水平较常温(28 ℃)显著升高,说明低温和LD处理对Ghd7的表达有协同作用,Ghd7的上调可能是低温条件下延迟开花的重要原因(Song et al., 2012)。Lu等(2014)发现酪蛋白激酶OsCKI调控水稻的低温应答。通过构建单片段导入系以及近等基因系材料,研究发现该基因在水稻中存在两种基因型:LTG1 (low temperature growth 1)和ltg1型。LTG1基因型的株系比ltg1基因型的株系更能适应低温,且大田环境LD高温条件下两种基因型的抽穗期一致,而SD低温条件下ltg1LTG1抽穗期提前20 d,温室SD高温条件下两者抽穗期无显著差异。以上结果表明LTG1调控低温SD条件下水稻抽穗期。定量表达分析发现基因型ltg1株系中HD3aRFT1表达量明显比野生型低,推测基因LTG1调控水稻低温抽穗期响应可能与调控HD3a、RFT1等抽穗期因子表达量有关。

 

近几十年来,随着全球气候变暖,高温胁迫时有发生。高温胁迫导致水稻抽穗期提前而影响水稻产量和适应性。Chen等(2018)分别进行了人工气候室和大田温度梯度播种试验,发现已报道的抽穗期调控位点qHd1在水稻对高温提早抽穗期的耐受性中具有重要作用。qHd1存在两种基因型,其中珍汕97基因型多存在于早籼品种中,在中籼和晚籼品种较少。不同温度梯度播种实验发现,随着温度的升高,含有MY46基因型的近等基因系的抽穗期从76 d减少到58 d,而含有珍汕97基因型的近等基因系在梯度1到梯度3中以相同的速度促进抽穗,然后抽穗期稳定在69 d。人工气候室温度梯度实验也证实了这种高温响应。进一步研究表明,qHd1位点包含两个抽穗期相关基因OsMADS51OsSPL2,其中珍汕97型OsMADS51的第一个内含子有9.5 kb的插入,这导致了抽穗期相关基因OsMADS51、Ehd1、RFT1Hd3a表达差异,从而实现了OsMADS51-Ehd1-Hd3a/RFT1这一抽穗期调控通路对高温胁迫的耐受响应(Chen et al., 2018)。另外,Kim等(2018)通过分析57份水稻品种(其中12份是适合热带气候的温带粳稻品种, 17份是温带粳稻品种)的7个主要抽穗调控基因Hd1OsPPR37DTH8Ghd7Ehd1RFT1Hd3a的基因型及在温带和热带的抽穗期,发现Hd1基因实现了温带粳稻对热带地区种植的适应性,而OsMADS51不参与温带粳稻对热带地区种植的适应(Kim et al., 2018)。

 

3展望

水稻是重要的粮食作物,抽穗期是重要农艺性状之一,是影响水稻产量的重要因素。近年来国内外科研工作者已经鉴定了大量的控制水稻抽穗期的基因,但是仍有很多未知的抽穗期基因需要进一步挖掘和功能解析。非生物胁迫,如干旱胁迫、温度胁迫都会延迟或提前水稻开花抽穗,但是具体的分子机制仍不清楚。随着全球气候变暖,极端天气频发,淡水资源日益缺乏,非生物胁迫对作物产量的影响日趋严重。因此,深入解析干旱、盐碱等非生物胁迫下水稻调控抽穗期的分子机制,将成为未来研究的重要方向,对培育抗逆水稻新品种从而保障粮食安全具有重要意义。

 

作者贡献

孟祥雪负责资料的收集和文章初稿的写作;郑崇珂和彭永彬负责资料的整理和文章的校对;谢先芝和和亚男是项目的构思者,指导文章写作与修改。全体作者都阅读并同意最终的文本。

 

致谢

本研究由山东省自然科学基金项目(ZR2018PC009)、山东省农业科学院科技创新工程资助项目(CXGC2019G02)和山东省农业科学院农业科技创新工程(CXGC2018E16)共同资助。

 

参考文献

Chen J.Y., Zhang H.W., Zhang H.L., Ying J.Z., Ma L.Y., and Zhuang J.Y., 2018, Natural variation at qHd1 affects heading date acceleration at high temperatures with pleiotropism for yield traits in rice, BMC Plant Biology, 18(1): 112-123.

 

Cho L.H., Yoon J.M., Pasriga R., and An G., 2016, Homodimerization of Ehd1 is required to induce flowering in rice, Plant Physiology, 170(4): 2159-2171.

 

Du A.P., Tian W., Wei M.H., Yan W., He H., Zhou D., Huang X., Li S.G., and Ouyang X.H., 2017, The DTH8-Hd1 module mediates day-length-dependent regulation of rice flowering, Molecular Plant, 10(7): 948-961.

 

Du H., Huang F., Wu N., Li X.H., Hu H.H., and Xiong L.Z., 2018, Integrative regulation of drought escape through ABA-dependent and -independent pathways in rice, Molecular Plant, 11(4): 584-597.

 

Galbiati F., Chiozzotto R., Locatelli F., Spada A., Genga A., and Fornara F., 2016, Hd3a, RFT1 and Ehd1 integrate photoperiodic and drought stress signals to delay the floral transition in rice, Plant Cell &Environment, 39(9): 1982-1993.

 

Gao H., Jin M., Zheng X.M., Chen J., Yuan D., Xin Y., Wang M., Huang D., Zhang Z., Zhou K., Sheng P., Ma J., Ma W., Deng H., Jiang L., Liu S., Wang H., Wu C., Yuan L., and Wan J., 2014, Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice, Proc. Natl. Acad. Sci. U S A., 111(51): 16337-16342.

 

Gao H., Zheng X.M., Fei G., Chen J., Jin M., Ren Y., Wu W., Zhou K., Sheng P., Zhou F., Jiang L., Wang J., Zhang X., Guo X., Wang J.L., Cheng Z., Wu C., Wang H., and Wan J.M., 2013, Ehd4 encodes a novel and Oryza-genus-specific regulator of photoperiodic flowering in rice, PLoS Genetics, 9(2): e1003281

 

Hayama R., Yokoi S., Tamaki S., Yano M., and Shimamoto K., 2003, Adaptation of photoperiodic control pathways produces short-day flowering in rice, Nature, 422(6933): 719-722.

 

Jiang D., Hong G.C., Chen Q., Liu S.F., and Qin X.J., 2018, Research progress in molecular regulation of heading date in rice (Oryza sativa), Fenzi Zhiwu Yuzhong (Molecular Plant Breeding), 17(21):151-157. (蒋丹, 洪广成, 陈倩, 刘石锋, 秦小健, 2018, 水稻抽穗期分子调控研究进展, 分子植物育种,17(21):151-157.)

 

Jiang P.F., Wang S.L., Jiang H.Y., Cheng B.J., Wu K.Q., and Ding Y., 2018a,The COMPASS-like complex promotes flowering and panicle branching in rice, Plant Physiology, 176(4): 2761-2771.

 

Jiang P.F., Wang S.L., Zheng H., Li H., Zhang F., Su Y.H., Xu Z.T., Lin H.Y., Qian Q., and Ding Y., 2018b, SIP1 participates in regulation of flowering time in rice by recruiting OsTrx1 to Ehd1, New Phytologist, 219(1): 422-435.

 

Kim S.K., Yun C.H., Lee J.H., Jang Y.H., Park H.Y., and Kim J.K., 2008, OsCO3, a CONSTANS-like gene, controls flowering by negatively regulating the expression of FT-like genes under SD conditions in rice, Planta, 228(2): 355-365.

 

Kim S.L., Lee S., Kim H.J., Nam H.G., and An G., 2007, OsMADS51 is a short-day flowering promoter that functions upstream of Ehd1, OsMADS14, and Hd3a, Plant Physiology, 145(4): 1484-1494.

 

Kim S.R., Torollo G., Yoon M.R., Kwak J., Lee C.K., Prahalada G.D., Choi I.R., Yeo U.S., Jeong O.Y., Jena K.K., and Lee J.S., 2018, Loss-of-function alleles of heading date 1 (Hd1) are associated with adaptation of temperate japonica riceplants to the tropical region, Frontiers in Plant Science, 9: 1827.

 

Liang Z.W., Yang F., Wang Z.C., and Chen Y., 2004, Effect of the main growth characteristics of rice under saline-alkali stress, Shengtai Huanjing (Ecology and Environment), 13(1): 43-46. (梁正伟, 杨福, 王志春, 陈渊, 2004, 盐碱胁迫对水稻主要生育性状的影响, 生态环境, 13(1): 43-46.)

 

Li Q.Y., Zhu C.Y., Li X.Y., Xiang Y.J., Yang X.R., Fu H.J., and Zhang H., 2021, Drought resistance identification and index screening of rice near-isogenic introgression lines at germinating stage, Henong Xuebao (Journal of Nuclear Agricultural Sciences), (1): 0192-0201. (李其勇, 朱从桦, 李星月, 向运佳, 杨晓蓉, 符慧娟, 张鸿, 2021, 水稻近等基因导入系芽期抗旱性鉴定及抗旱指标筛选, 核农学报, (1): 0192-0201.)

 

Lu G., Wu F.Q., Wu.W., Wang H.J., Zheng X.M., Zhang Y., Chen X., Zhou K., Jin M., Cheng Z., Li X., Jiang L., Wang H., and Wan J., 2014, Rice LTG1 is involved in adaptive growth and fitness under low ambient temperature, Plant Journal, 78(3): 468-480.

 

Matsubara K., Yamanouchi U., Nonoue Y., Sugimoto K., Wang Z.X., Minobe Y., and Yano M., 2011, Ehd3, encoding a plant homeodomain finger-containing protein, is a critical promoter of rice flowering, Plant Journal,66(4): 603-612.

 

Matsubara K., Yamanouchi U., Wang Z.X., Minobe Y., Izawa T., and Yano M., 2008, Ehd2, a rice ortholog of the maize INDETERMINATE1 gene, promotes flowering by up-regulating Ehd1, Plant Physiology, 148(3): 1425-1435.

 

Minh-Thu P.T., Kim J.S., Chae S., Jun K.M., Lee G.S., Kim D.E., Cheong J.J., Song S.I., Nahm B.H., and Kim Y.K., 2018, A WUSCHEL homeobox transcription factor, OsWOX13, enhances drought tolerance and triggers early flowering in rice, Molecules Cells, 41(8): 781-798.

 

Nemoto Y., Nonoue Y., Yano M., and Izawa T., 2016, Hd1,a CONSTANS ortholog in rice, functions as an Ehd1 repressor through interaction with monocot-specific CCT-domain protein Ghd7, Plant Journal,86(3): 221-233

 

Park S.J., Kim S.L., Lee S., Je B.I., Piao H.L., Park S.H., Kim C.M., Ryu C.H., Park S.H., Xuan Y.H., Colasanti J., An G., and Han C.D., 2008, Rice Indeterminate 1 (OsId1) is necessary for the expression of Ehd1 (Early heading date 1) regardless of photoperiod, Plant Journal, 56(6): 1018-1029.

 

Ryu C.H., Lee S., Cho L.H., Kim S.L., Lee Y.S., Choi S.C., Jeong H.J., Yi J., Park S.J., Han C.D., and An G., 2009, OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice, Plant Cell & Environment, 32(10): 1412-1427.

 

Song Y.L., Gao Z.C., and Luan W.J., 2012, Interaction between temperature and photoperiod in regulation of flowering time in rice, Science China life sciences, 55(3): 241-249.

 

Su L., Shan J.X., Gao J.P., and Lin H.X., 2016, OsHAL3, a blue light-responsive protein, interacts with the floral regulator Hd1 to activate flowering in rice, Molecular Plant, 9(2): 233-244.

 

Taoka K., Ohki I., Tsuji H., Furuita K., Hayashi K., Yanase T., Yamaguchi M., Nakashima C., Purwestri Y.A., Tamaki S., Ogaki Y., Shimada C., Nakagawa A., Kojima C., and Shimamoto K., 2011, 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen, Nature, 476(7360): 332-335.

 

Wang P., Xiong Y., Gong R., Yang Y., Fan K., and Yu S.B., 2019, A key variant in the cis-regulatory element of flowering gene Ghd8 associated with cold tolerance in rice, Scientific Reports, 9(1): 9603.

 

Wang Y., Lu Y.Y., Guo Z.Y., Ding Y.F., and Ding C.Q., 2020, RICE CENTRORADIALIS 1, a TFL1-like Gene, responses to drought stress and regulates rice flowering transition, Rice (New York), 13: 70.

 

Weng X.Y., Wang L., Wang J., Hu Y., Du H., Xu C.G., Xing Y.Z., Li X.H., Xiao J.H., and Zhang Q.F., 2014, Grain number, plant height, and heading date7 is a central regulator of growth, development, and stress response, Plant Physiology, 164(2): 735-747.

 

Wu W., Zheng X.M., Lu G., Zhong Z., Gao H., Chen L., Wu C., Wang H.J., Wang Q., Zhou K., Wang J.L., Wu F., Zhang X., Guo X., Cheng Z., Lei C., Lin Q., Jiang L., Wang H., Ge S., and Wan J., 2013, Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia, Proceedings of the National Academy of Sciences of the United States of America, 110(8): 2775-2780.

 

Xia K.F., Wang R., Ou X.J., Fang Z.M., Tian C., Duan J., Wang Y.Q., and Zhang M.Y., 2012, OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice, PLoS One, 7(1): e30039

 

Xue W.Y., Xing Y.Z., Weng X.Y., Zhao Y., Tang W.J., Wang L., Zhou H.J., Yu S.B., Xu C.G., Li X.H., and Zhang Q.F., 2008, Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice, Nature Genetics, 40(6): 761-767.

 

Yan W.H., Wang P., Chen H.X., Zhou H.J., Li Q.P., Wang C.R., Ding Z.H., Zhang Y.S., Yu S.B., Xing Y. Z., and Zhang Q.F., 2011, A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice, Molecular Plant, 4(2): 319-330.

 

Ye J., Niu X.J., Yang Y.L., Wang S., Xu Q., Yuan X.P., Yu H.Y., Wang Y.P., Wang S., Feng Y., and Wei X.H., 2018, Divergent Hd1, Ghd7, and DTH7 Alleles Control Heading Date and Yield Potential of Japonica Rice in Northeast China, Frontiers in Plant Science, 9: 35.

 

Zhang C.Y., Liu J., Zhao T., Gomez A., Li C., Yu C.S., Li H.Y., Lin J.Z., Yang Y.Z., Liu B., and Lin C.T., 2016, A drought-inducible transcription factor delays reproductive timing in rice, Plant Physiology,171(1): 334-343

 

Zhang X., Li J.P., Chen Y.H., Li X.H., and Yang.F., 2020, Identification and analysis of saline-alkali tolerance in rice agronomic traits, Turang yu Zuowu (Soils and Crops),9(3): 260-270. (张鑫, 李景鹏, 陈艳辉, 李羡宏, 杨福, 2020, 水稻农艺性状的耐盐碱鉴定及比较分析, 土壤与作物, 9(3): 260-270.)

 

Zheng T.H., Sun J., Zhou S.R., Chen S.H., Lu J., Cui S., Tian Y.L., Zhang H., Cai M.H., Zhu S.S., Wu M.M., Wang Y.H., Jiang L., Zhai H.Q., Wang H.Y., and Wan J.M., 2019, Post-transcriptional regulation of Ghd7 protein stability by phytochrome and OsGI in photoperiodic control of flowering in rice, New Phytologist, 224(1): 306-320.

 

Zhu S.S., Wang J.C., Cai M.H., Zhang H., Wu F.Q., Xu Y., Li C.N., Cheng Z.J., Zhang X., Guo X.P., Sheng P.K., Wu M.M., Wang J.L., Lei C.L., Wang J., Zhao Z.C., Wu C.Y., Wang H.Y., and Wan J.M., 2017, The OsHAPL1-DTH8-Hd1 complex functions as the transcription regulator to repress heading date in rice, Journal of Experimental Botany, 68(3): 553-568.

    0.625
00120
《分子植物育种》网络版
• 第 19 卷
阅览选项
. 全文 PDF
. 全文 HTML
读者评论
. 评论
作者的其他论文
.
孟祥雪
.
彭永彬
.
郑崇珂
.
谢先芝
.
和亚男
相关论文
.
水稻
.
抽穗期
.
基因
.
调控网络
.
非生物胁迫
服务
. 发表评论