研究报告/Research Report

小豆WRKY基因家族鉴定及表达分析  

罗永坚1,2 , 刘瑞曦1,2 , 王茹1,2 , 刘相泉1,2 , 熊莉军3 , 李吉涛1,2 , 邓志军1,2
1生物资源保护与利用湖北省重点实验室, 湖北民族大学, 湖北恩施, 445000;
2恩施州特色植物资源种质工程技术研究中心, 湖北民族大学, 湖北恩施 445000;
3湖北省恩施土家族苗族自治州气象局, 湖北恩施, 445000
作者    通讯作者
《分子植物育种》网络版, 2021 年, 第 19 卷, 第 44 篇   
收稿日期: 2021年05月23日    接受日期: 2021年08月04日    发表日期: 2021年08月11日
© 2021 BioPublisher 生命科学中文期刊出版平台
本文首次发表在 《分子植物育种》(ISSN1672-416X,CN46-1068/S)上。现依据版权所有人授权的许可协议,采用 Creative Commons Attribution License,协议对其进行授权,再次发表与传播。只要对原作有恰当的引用, 版权所有人允许并同意第三方无条件的使用与传播。
摘要

WRKY蛋白是高等植物中转录因子家族的成员,在植物生长过程中参与重要的调控作用。为探究WRKY基因家族在小豆基因组中的特征,本研究利用生物信息学工具进行分析。结果显示:小豆中鉴定得到88个WRKY基因,编码氨基酸长度为97~1339aa,等电点为10.6~4.64,均定位在细胞核内,二级结构主要为无规则卷曲;通过小豆与拟南芥、桉树、水稻进行系统发育分析发现,该基因家族可分为五大类;该基因家族在小豆染色体上呈不均匀分布,8号染色体最少仅含有2个基因;外显子数量在 2~6个不等,WRKY蛋白保守motif不同亚家族间差异较大;上游启动子序列中含有多个同非生物胁迫以及生长发育相关元件,GO注释分析进一步证实了WRKY主要参与转录调控;小豆内部有32对共线性基因,与水稻、玉米、桉树、拟南芥共线性基因个数分别为16、8、39、55; 通过蛋白质互作网络分析,该蛋白家族不仅成员之间可以发生互作,还与其他蛋白互作;基于RNA-seq的表达分析结果表明,小豆WRKY基因家族在多个组织表达,部分基因在叶片、顶端、花、根、根瘤中存在高表达。本研究对小豆WRKY基因家族进行鉴定和分析,为进一步探究小豆WRKY转录因子的功能、进化以及分子育种具有重要的现实意义。

关键词
赤豆;WRKY;GO注释;共线性;蛋白互作网络;生物信息学

Identification and Expression Analysis of WRKY Gene Family in Vigna angularis

Luo Yongjian 1,2 Liu Ruixi 1,2 Wang Ru 1,2 Liu Xiangquan 1,2 Xiong Lijun 3 Li Jitao 1,2 Deng Zhijun 1,2*

1 Hubei Key Laboratory of Biologic Resources Protection and Utilization (Hubei Minzu University), Enshi, 445000

2 Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture (Hubei Minzu University), Enshi, 445000

3 Meteorological Bureau of Enshi Tujia&Miao Autonomous Prefecture, Enshi, 445000

* Corresponding author, zhijundeng@qq.com

Abstract WRKY transcription factors play an important role in plant growth and development. Based on published genome and transcriptome data of adzuki bean, we analyzed the composition and characteristics of VaWRKYs gene family using bioinformatics methods. In this study, a total of 88 WRKY genes were identified in the adzuki bean genome, and the length of amino acids encoded by these genes were 97 ~ 1339 aa, and the equielectric point were 10.6 ~ 4.64, and all of them were located in the nucleus, and the secondary structure of these WRKY proteins included quite a few random coils. The VaWRKYs family could be divided into five subfamilies, and these family members were inevenly distributed on 11 chromosomes, and the least amount was distributed on chromosome 8, for only one. The gene structure of the VaWRKYs family is relatively conservative with each gene containing 2~6 exons. There were larger differences in conserved motifs between different subfamilies of VaWRKYs family, and motif1 or motif2 was the core conservative domain of the protein family. The upstream promoter sequence in VaWRKYs contained several cis-acting elements related to abiotic stresses and growth and development. The results of GO annotation analysis further confirmed that VaWRKYs proteins were mainly involved in the transcriptional regulation. There were 32 pairs of collinear VaWRKYs genes within the adzuki bean genome, and the amount of colinear WRKY genes between adzuki bean and rice, corn, Eucalyptus grandis and Arabidopsis was 16, 8, 39 and 55, respectively. The results of the protein interaction network analysis showed that VaWRKYs transcription factors did not only haver extensive interactions with other proteins, but there were also interactions between the members of the transcription factor family. The RNA-seq expression analysis results showed that VaWRKYs were highly expressed in the leaves, stems, flowers, roots and rhizoma. These results will provide references for further study on VaWRKYs functions and a molecular breeding.

Keywords Vigna angularis, WRKY, GO annotation, Collinearity, Protein interaction network, Bioinformatics

 

植物在整个生命周期中会遇到不同类型的胁迫,这些胁迫阻碍它们达到最佳生长状态,并因此可能对作物产量产生巨大影响(Boyer, 1982; Kang et al., 2016; Bai et al., 2018; Garbeva and Weisskopf, 2020)。在漫长的进化过程中,植物形成了一系列适应不同环境胁迫的自我调节机制,转录因子在众多的调节机制中扮演着重要角色(Wang et al., 2016; Finatto et al., 2018)。其中,WRKY是植物中最大的转录因子家族,参与多种生理和发育过程(Rushton et al., 2010)。WRKY基因首次在甘薯(Dioscorea esculenta) (Ülker and Somssich, 2004) 中被成功克隆,随后在水稻(Oryza sativa) (Ross et al., 2007)、黄瓜(Cucumis sativus) (Ling et al., 2011)、葡萄(Vitis vinifera) (Cheng et al., 2018)、小麦(Triticum aestivum) (Gupta et al., 2019)、玉米(Zea mays) (Li et al., 2020)等作物中依次被克隆出来。

 

WRKY转录因子家族具有丰富的结构多样性,典型特征是在其蛋白序列中均包含一段由大约60个氨基酸残基组成的DNA结合结构域(Eulgem et al., 2000),N端具有保守的WRKYGQK七肽序列,C端具有C2H2或C2HC型的锌指结构(Jian et al., 2011)。根据WRKY结构域数量及锌指结构类型,可将WRKY基因家族分成三组,其中组I包含两个WRKY结构域,而组Ⅱ和组Ⅲ都只含一个WRKY结构域。组Ⅰ和组Ⅱ的锌指结构基序为C2H2 (C-X4-C-X22-23-HXH),组Ⅲ的锌指结构基序为C2CH(C-X7-C-X23-HXC)。另外,组II还可进一步分为五个亚组,包括从Ⅱa到Ⅱe (Eulgem et al., 2000)。

 

WRKY转录因子广泛参与植物的生长发育过程,如表皮毛起始发育(Johnson et al., 2002)、胚胎发生(Lagace and Matton, 2004)、种子发育(黄芸, 2016)、休眠(Robatzek, 2002)和衰老(Hinderhofer and Zentgraf, 2001)等。同时,它们也是赤霉素(Zhen et al., 2010)、脱落酸(Ülker and Somssich, 2004)和水杨酸(Du and Chen, 2000)等植物激素信号转导过程中的关键组分。此外,WRKY转录因子还广泛参与到植物的各种生物胁迫(Marchive et al., 2007; Qiu et al., 2007; Wang and Zeng, 2008; 孙财强等, 2016)和非生物胁迫(Ren et al., 2010; Tripathi et al., 2014; Chen et al., 2017; Xu et al., 2018; Li et al., 2020; Wang et al., 2020)调控。

 

赤豆(Vigna angularis),又名红豆、小豆、红小豆,豆科(Leguminosae)蝶形花亚科(Papilionoideae)豇豆属的一种一年生直立或缠绕草本作物(Liu et al., 2013)。赤豆起源于中国,已有12000年的栽培历史(Tomooka et al., 2005)。在当今大力发展优质、高效农业的时代背景下,赤豆已成为首选作物之一(殷丽华等, 2020)。但在实际生产中,作物常常会因不可避免的环境胁迫而减产,甚至绝收(梁辉等, 2019; 曲越, 2019)。WRKY基因家族在植物的生长发育和胁迫应答过程中都起着重要作用,目前已在多种植物中开展了相关研究,但在赤豆中还尚未进行系统研究(殷丽华等, 2020)。本研究基于已公布的赤豆基因组和转录组数据,利用生物信息学方法鉴定赤豆中的WRKY基因,并从基因结构、理化性质、系统进化、表达模式等方面分析其特征,以期为进一步研究赤豆的WRKY基因功能及分子育种提供参考。

 

1结果与分析

1.1赤豆WRKY基因家族成员鉴定及理化性质分析

共鉴定到88个赤豆WRKY基因,赤豆WRKY转录因子编码的氨基酸长度为97~1 339 aa,分子量为11.8~153.6 kDa,平均分子量为41.9 kDa,等电点为10.6~4.64 (表1)。亚细胞定位分析表明,赤豆WRKY转录因子家族成员均定位于细胞核内(表1)。赤豆WRKY蛋白二级结构中所含的无规则卷曲最多(29.65%~64.40%),其次为α-螺旋(11.52%~47.56%)、伸展链(7.25%~26.80%)和β-转角(1.74%~15.46%) (表1)。

 

表1 赤豆中WRKY基因的鉴定

Table 1 Identification of WRKY genes in Vigna angularis

 

1.2 VaWRKYs转录因子系统进化分析

利用MEGA7.0软件对拟南芥(Arabidopsis thaliana)、大桉(Eucalyptus grandis)、水稻和赤豆的WRKY转录因子进行多重序列比对(图1),并构建系统进化树(图2)。结果表明,VaWRKYs蛋白的序列高度保守,其中81个VaWRKY蛋白的核心结构域为WRKYGQK,其余7个VaWRKY蛋白(VaWRKY18, VaWRKY20, VaWRKY21, VaWRKY48, VaWRKY49, VaWRKY55, VaWRKY74)的核心结构域则出现单个氨基酸的变化(WRKYGKK和WRKYGEK);VaWRKYs可分为三组,其中组Ⅰ包括11个VaWRKY,N端和C端各有一个WRKYGQK保守结构域,N端锌指结构为CX4C22HXH形式,C端锌指结构则为CX4C23HXH形式;组Ⅱ的VaWRKY可进一步分成五个亚组(Ⅱa~Ⅱe),各亚组的成员个数分别为9、9、22、9和11个;组Ⅲ的12个成员均含有C2HC型锌指结构(CX7CX23HXC)。

 

 

图1 赤豆与桉树、拟南芥和水稻WRKY基因进化分析

Figure 1 The unrooted phylogenetic tree of VaWRKY gene family in Vigna angularis, rice, Arabidopsis and Eucalyptus grandis

 

 

图2 赤豆, 水稻, 拟南芥和大桉中WRKY基因的无根系统进化树

Figure 2 The unrooted phylogenetic tree of WRKY genes in adzuki bean, rice, Arabidopsis and Eucalyptus grandis

 

1.3 VaWRKYs基因结构及其蛋白保守基序分析

利用MEME在线分析工具对88个VaWRKY转录因子进行序列分析,共找到10个保守motif。所有成员至少含有1个motif1或motif2,表明motif1和motif2为VaWRKYs的核心保守结构域;而motif9是Ⅱc类特有的保守结构域;motif4为Ⅲ类的特有保守结构域。基因结构分析表明,VaWRKYs外显子结构个数为2~6个(图3)。

 

 

图3 VaWRKYs基因家族保守基序与基因结构分析

Figure 3 An analysis on conserved motifs and gene structure of VaWKRYs family

 

1.4 VaWRKYs启动子顺势作用元件分析和VaWRKYs的GO注释分析

通过对VaWRKYs上游1500 bp的启动子序列进行的顺式作用元件分析,共发现12个响应非生物胁迫的顺式作用元件,并可分为三类:激素相关元件(包括ABA响应元件ABRE, 茉莉酸响应元件TGACG)、生长发育相关元件(MYC)和胁迫相关元件(胁迫响应元件TC-rich repeats, 低温响应元件LTR) (图4)。这些顺式作用元件可与多种抗逆相关反式作用因子相结合,参与赤豆应对生物和非生物胁迫的调控过程。

 

GO注释分析将88个赤豆WRKY转录因子家族各成员分别注释到分子功能(Molecular function)、生物过程(Biological process)和细胞成分(Celluar component)三大类下面的22个不同的具体功能类别。其中,富集到分子功能大类的最多,主要涉及与核酸结合相关的具体功能;富集到生物过程大类的次之,主要涉及RNA、芳香族化合物等的生物合成调控和应激反应与信号转导;富集到细胞成分大类的最少,只涉及细胞核成分(图5)。GO注释分析结果与VaWRKYs作为转录因子的功能相一致。

 

 

图4 VaWRKYs启动子区顺式作用元件预测

Figure 4 Prediction about cis-acting elements in the promoter zone of VaWRKYs

 

 

图5 VaWRKYs蛋白GO功能注释

Figure 5 GO function annotation for VaWRKYs protein

 

1.5 VaWRKYs染色体定位及共线性分析

VaWRKYs非均匀分布在赤豆的全部11条染色体上,其中1、3、4、5、6、7、9号染色体上分布最多,8号染色体上仅有1个;VaWRKYs存在32个串联重复事件,涉及50个基因(图6)。由此推测,基因扩增可能是VaWRKYs基因家族进化的主要推力。

WRKY基因的多物种基因组联合比对后发现,水稻与赤豆共发生29个共线性事件,涉及赤豆的16个WRKY基因;玉米与赤豆共发生10个共线性事件,涉及赤豆的8个WRKY基因;拟南芥与赤豆共发生89个共线性事件,涉及赤豆的55个WRKY基因;大桉与赤豆之间也存在较多共线性事件(图7)。

 

 

图6 VaWRKYs染色体定位及共线性分析

Figure 6 Chromosome location and collinearity analysis of VaWRKYs

 

 

图7 赤豆与拟南芥, 玉米, 大桉和水稻中WRKY基因的共线性分析

Figure 7 A Collinearity analysis of WRKY genes in adzuki bean, Arabidopsis, eucalyptus grandis and rice

 

1.6 VaWRKYs蛋白互作分析

VaWRKY38/62/54/70/51/40之间存在较强的蛋白互作关系,可能共同参与某些胁迫应答调控过程。VaWRKY17/28/21/6/62/25/75/29/53均与另一个转录因子NPR1存在蛋白互作关系,NPR1是水杨酸信号转导途径中的一个重要转录因子,或许这些VaWRKY与NPR1共同参与到水杨酸信号转导过程,又或许这些VaWRKY的功能依赖NPR1,如AtWKRY62就依赖NPR1共同调控下游信号的转导(黄金存等, 2007; 闫晓寒, 2021)(图8)。VaWRKY48/40/33/53/11不仅彼此之间存在蛋白互作关系,而且还与生长发育、抗逆、激素响应等过程中的蛋白存在互作关系。VaWRKY72/62/9/14/35之间也存在蛋白相互关系。

 

 

图8 VaWRKYs蛋白互作分析

Figure 8 Protein-protein interaction analysis of VaWRKYs

 

1.7 VaWRKYs在赤豆不同器官和组织中的表达分析

基于赤豆的RNA-seq数据,对VaWRKYs在子叶、胚轴、根、根瘤、茎、叶、花和幼荚中的表达情况进行了聚类分析(图9)。结果表明,大多数VaWRKY基因至少在一个组织中存在表达,VaWRKYs在赤豆不同器官和组织中的表达存在差异;大多数VaWRKY在幼荚中不表达,而在根中大多数基因都有较高的表达,说明赤豆WRKY基因家族在根系的整个生长起着至关重要的作用;VaWRKY24/28/45/48/75/84/87/88在子叶中表达量较高。在赤豆的花组织中VaWRKY7/58/67存在高表达,而其他组织中表达不明显,猜测这些基因可能参与花发育过程的调控。植物基因的表达部位往往和其发挥的功能有紧密的联系,WRKY基因家族在不同组织或阶段具有不同的表达模式,说明在进化上也存在差异,在植物生长过程中各自行使功能。

 

 

图9 VaWRKYs表达分析

Figure 9 An expression analysis of VaWRKYs

 

2讨论

WRKY基因家族成员的数量和组成在不同植物中存在很大差异。在本研究中,共鉴定出88个VaWRKY基因(表1),并可将VaWRKYs蛋白家族分为三大类(组I, Ⅱ和Ⅲ),且组Ⅱ又可进一步分为5个亚组(Ⅱa, Ⅱb, Ⅱc, Ⅱd和Ⅱe),其中组Ⅱc成员最多(图1),与许多豆科作物的研究结果相似(Yin et al., 2013; Song et al., 2016; Song et al., 2018),或许暗示着组Ⅱc的WKRY基因在进化上更为活跃,并很可能在整个豆科作物中具有更为重要的功能。大多数VaWRKYs都含有高度保守的WRKYGQK序列,但组I、组Ⅱd和组Ⅱe均有变异,主要分布在组Ⅱe中(图1),这或许意味着组Ⅱe中的WRKY基因可能具有不同的核酸结合特异性和生物学功能(Srivastava et al., 2018)。

 

基因复制事件对基因家族的产生具有重要作用,基因重复复制为新基因提供原材料,促进新功能的产生。基因的复制主要包括串联复制和片段复制。种内共线性分析结果显示,VaWKRYs在赤豆1、3、4、5、6、7、9染色体上聚为21个串联复制事件区域(图6)。除串联重复事件外,通过Blast P和MCScanX方法还鉴定到了32个片段复制事件,涉及50个WRKY基因。这些结果表明,部分赤豆WRKY基因可能是由基因复制产生的,节段性复制事件是WRKY进化的主要驱动力。计算了WRKY基因对的Ka/Ks比值,并且大多数同源的WRKY基因对的Ka/Ks值都小于1,这表明VaWRKYs在进化过程中可能经历了很强的纯化选择压力。VaWRKYs与同为双子叶植物的大桉EgWKRYs和拟南芥AtWKRYs之间存在着大量的共线性基因对,而与水稻OsWKRYs和玉米ZmWKRYs两种单子叶植物之间共线性基因对数目较少(图7),表明在系统进化过程中,双子叶植物的WRKY基因与单子叶植物WRKY基因的进化分支存在差异。

 

蛋白互作分析显示,VaWRKYs家族不仅在其各成员之间存在大量的蛋白互作,而且与其他转录因子之间也存在广泛的蛋白互作(图8),表明VaWRKYs在多个生物学过程中发挥着功能,为进一步挖掘VaWRKYs的生物学功能提供了新研究思路。

 

基因表达谱分析是研究基因功能的重要手段,特别是对于具有组织表达特异性的基因。具有相同组织表达模式的基因可能具有相似的功能。VaWRKYs在八个不同器官和组织中的表达差异很大(图9)。与此类似,WRKY基因在水稻与二穗短柄草(Brachypodium distachyon)的不同组织和发育阶段也具有显著的差异表达(Wen et al., 2014)。似乎暗示着WRKY基因在进化上的差异和功能的多样性。

 

3材料与方法

3.1赤豆WRKY基因家族成员的鉴定及理化性质的分析

在Esemble plants数据库中下载赤豆基因组、CDS、pep、gff3等序列作为备用文件。Pfam数据库(El-Gebali et al., 2019)下载WRKY保守结构域的隐马尔可夫模型(HMM)文件(序列号为PF03106),以此为搜索序列,利用HMMER v3.2软件在赤豆的本地数据库中进行Blast搜索,设阈值为 E-value<10-10,获取赤豆蛋白序列。通过SMART(Richmond, 2000), CDD (Marchler-Bauer et al., 2017)(Finn, 2006)在线软件预测候选蛋白质序列。利用Expasy (Artimo et al., 2012)分析赤豆WRKY成员的蛋白质序列长度、分子量及等电点。利用Euk-mP-Loc2.0进行亚细胞定位。利用prabi (https://npsa-prabi.ibcp.fr/)在线分析软件进行二级结构分析。

 

3.2赤豆WRKY转录因子的分类及系统进化

利用赤豆、拟南芥、大桉、水稻的WRKY家族的蛋白质结构域整体构建进化树,利用MEGA-7 (Kumar et al., 2016)构建进化树,采用邻接法(Neighbor-Joining, NJ)作为进化树生成算法,校验参数Bootstrap重复1000次。结合拟南芥AtWRKY转录因子的分类,对赤豆WRKY转录因子进行分类。

 

3.3赤豆WRKY基因结构、motif及保守结构域分析

利用TBtools (Chen et al., 2020)软件根据赤豆家族GFF文件和CDS文件进行结构域预测,结果文件分别绘制基因结构图和结构域分布图,利用MEME (Bailey et al., 2009)软件对赤豆WRKY家族成员进行保守基序分析,Motif数量设置为10个。

 

3.4赤豆WRKY家族基因顺式作用元件和GO注释分析

提取WRKY家族基因上游1 500 bp长度的序列作为启动子序列,提交到Plant CARE (Lescot, 2002)(http://bioinformatics.psb.ugent.be/)数据库,对赤豆WRKY家族基因进行上游顺式作用元件分析,预测转录因子可识别并特异性结合的顺式作用元件。将赤豆WRKY转录因子家族的88个基因序列提交到Plant Trancsciptional Regulatory Map进行GO注释,整合得到的GO注释信息,利用Excel进行可视化。

 

3.5赤豆WRKY共线性分析

使用Linux版本的MCScan-X (Wang et al., 2012)软件,进行染色体定位并分别对赤豆内部和拟南芥、水稻、大桉、玉米的物种间共线性进行分析。

 

3.6赤豆WRKY家族蛋白质互作网络分析

基于在线分析软件STRING数据库,将赤豆WRKY基因家族蛋白质序列与模式植物拟南芥库作为参考进行比对,构建蛋白互作网络,对WRKY基因家族的蛋白互作信息进行评估和预测。

 

3.7赤豆WRKY基因家族表达分析

在NCBI的SRA数据库下载8个赤豆组织(PRJDB3778) (Sayers et al., 2021)的RNA-seq数据。利用hisat2 (Kim et al., 2019, 2)对赤豆基因组建立索引并对RNA-seq数据进行序列比对,利用featurecounts (Liao et al., 2014)软件进行计算表达量FPKM,利用TBtools (Chen et al., 2020)软件绘制赤豆WRKY基因家族在各组织的表达图谱。

 

作者贡献

罗永坚和王茹是本研究执行人,负责数据分析,论文初稿的撰写;刘瑞曦和刘相泉参与数据分析;邓志军、李吉涛和熊莉军指导实验设计和论文修改。全体作者都阅读并同意最终的文本。

 

致谢

本项目由国家自然科学基金(31860073)、生物资源保护与利用湖北省重点实验室2020年度开放基金(PT012008)和湖北民族大学大学生创新创业训练计划项目(X202010517284)共同资助。

 

参考文献

Artimo P., Jonnalagedda M., Arnold K., Baratin D., Csardi G., de Castro E., Duvaud S., Flegel V., Fortier A., and Gasteiger E., 2012, ExPASy: SIB bioinformatics resource portal, Nucleic Acids Res., 40: W597–W603

 

Bai Y., Kissoudis C., Yan Z., Visser R.G.F., and van der Linden G., 2018, Plant behaviour under combined stress: tomato responses to combined salinity and pathogen stress, Plant J., 93(4): 781–793

 

Bailey T.L., Boden M., Buske F.A., Frith M., Grant C.E., Clementi L., Ren J., Li W.W., and Noble W.S., 2009, MEME SUITE: tools for motif discovery and searching, Nucleic Acids Res., 37: W202–W208

 

Boyer J.S., 1982, Plant productivity and environment, Science, 218: 443–448

 

Chen J., Nolan T. M., Ye H., Zhang M., Tong H., Xin P., Chu J., Chu C., Li Z., and Yin Y., 2017, Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought responses, Plant Cell, 29(6): 1425–1439

 

Chen C., Chen H., Zhang Y., Thomas H.R., Frank M.H., He Y., and Xia R., 2020, TBtools: an integrative toolkit developed for interactive analyses of big biological data, Mol. Plant, 13(8): 1194–1202

 

Cheng C., Wang Y., Chai F., Li S., Xin H., and Liang Z., 2018, Genome-wide identification and characterization of the 14-3-3 family in Vitis vinifera L. during berry development and cold- and heat-stress response, BMC Genomics,19(1): 579–593

 

Du L., and Chen Z., 2000, Identification of genes encoding receptor-like protein kinases as possible targets of pathogen- and salicylic acid-induced WRKY DNA-binding proteins in Arabidopsis, Plant J., 24(6): 837–847

 

El-Gebali S., Mistry J., Bateman A., Eddy S.R., Luciani A., Potter S.C., Qureshi M., Richardson L.J., Salazar G.A., and Smart A., 2019, The Pfam protein families database in 2019, Nucleic Acids Res., 47(D1): D427–D432

 

Eulgem T., Rushton P.J., Robatzek S., and Somssich I.E., 2000, The WRKY superfamily of plant transcription factors, Trends Plant Sci., 5(5): 199–206

 

Finatto T., Viana V.E., Woyann L.G., Busanello C., Maia L.C.D., and Oliveira A.C.D., 2018, Can WRKY transcription factors help plants to overcome environmental challenges? Genet. Mol. Biol., 41(3): 533–544

 

Finn R.D., 2006, Pfam: clans, web tools and services, Nucleic Acids Res., 34(90001): D247–D251

 

Garbeva P., and Weisskopf L., 2020, Airborne medicine: bacterial volatiles and their influence on plant health, New Phytol., 226(1): 32–43

 

Gupta S., Mishra V.K., Kumari S., Raavi, Chand R., and Varadwaj P.K., 2019, Deciphering genome-wide WRKY gene family of Triticum aestivum L. and their functional role in response to Abiotic stress, Genes Genom., 41(1): 79–94

 

Hinderhofer K., and Zentgraf U., 2001, Identification of a transcription factor specifically expressed at the onset of leaf senescence, Planta, 213(3): 469–473

 

Huang J.C., Ye B.Y., Xu Y.F., Huang Z.X., Zhang H., Xu L.P., Chen Y.Q., and Chen R.K., 2007, Interaction mechanism of transcription factors WRKY and NPR1 in signal transduction of systemic acquired resistance, Shengwu Jishu Tongxun (Biotechnology Communication), 18(6): 992–994 (黄金存, 叶冰莹, 许玉芬, 黄祖新, 张华, 许莉萍, 陈由强, 陈如凯, 2007, 转录因子WRKY和NPR1在系统获得抗性信号转导中的相互作用机制, 生物技术通讯, 18(6): 992–994)

 

Huang Y., 2016, Molecular mechanism of Arabidopsis WRKY6 and PHO1 involved in ABA regulation of seed germination and early seedling growth, Dissertation for Ph.D., China Agricultural University, Supervisor: Wu W.H, pp.94–97 (黄芸, 2016, 拟南芥WRKY6和PHO1参与ABA调控种子萌发和早期幼苗生长过程的分子机制, 博士学位论文, 中国农业大学, 导师: 武维华, pp.94–97)

 

Jian L., Jiang W., Ying Z., Yu H., and Xie B., 2011, Genome-wide analysis of WRKY gene family in Cucumis sativus, BMC Genomics, 12(1): 471–491

 

Johnson C.S., Kolevski B., and Smyth D.R., 2002, TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of arabidopsis, encodes a WRKY transcription factor, Plant Cell, 14(6): 1359–1375

 

Kang H., Zhang M., Zhou S., Guo Q., Chen F., Wu J., and Wang W., 2016, Overexpression of wheat ubiquitin gene, Ta-Ub2, improves abiotic stress tolerance of Brachypodium distachyon, Plant Sci., 248: 102–115

 

Kim D., Paggi J.M., Park C., Bennett C., and Salzberg S.L., 2019, Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype, Nat. Biotechnol., 37(8): 907–915

 

Kumar S., Stecher G., and Tamura K., 2016, MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 33(7): 1870–1874

 

Lagace M., and Matton D.P., 2004, Characterization of a WRKY transcription factor expressed in late torpedo-stage embryos of Solanum chacoense, Planta, 219(1): 185–189

 

Lescot M., 2002, PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences, Nucleic Acids Res., 30(1): 325–327

 

Liang H., Yan S.Q., and Li H.Y., 2019, Study on the spatiotemporal coupling relationship between urbanization and cultivated land resources in China—Based on the data from 2001—2016, Hebei Jingji Xueyuan Xuebao (Journal of Hubei University of Economics), 17: 79–89 (梁辉, 严诗琦, 李海云, 2019, 我国城镇化与耕地资源的时空耦合关系研究——基于2001—2016年的数据, 湖北经济学院学报, 17: 79–89)

 

Liao Y., Smyth G.K., and Shi W., 2014, FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features, Bioinformatics, 30(7): 923–930

 

Ling J., Jiang W., Zhang Y., Yu H., Mao Z., Gu X., Huang S., and Xie B., 2011, Genome-wide analysis of WRKY gene family in Cucumis sativus, BMC Genomics, 12(1): 471–491

 

Liu L., Bestel S., Shi J., Song Y., and Chen X., 2013, Paleolithic human exploitation of plant foods during the last glacial maximum in North China, P. Natl. Acad. Sci. USA, 110(14): 5380–5385

 

Li X.Y., Wang Y., Dai Y., He Y., Li C.X., Mao P., and Ma X.R., 2020, The transcription factors of tall fescue in response to temperature stress, Plant Biology, 23(S1): 89–99

 

Marchive C., Mzid R., Deluc L., Barrieu F., Pirrello J., Gauthier A., Corio-Costet M.-F., Regad F., Cailleteau B., Hamdi S., and Lauvergeat V., 2007, Isolation and characterization of a Vitis vinifera transcription factor, VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobacco plants, J. Exp. Bot., 58(8): 1999-2010

 

Marchler-Bauer A., Bo Y., Han L., He J., Lanczycki C. J., Lu S., Chitsaz F., Derbyshire M.K., Geer R.C., and Gonzales N.R., 2017, CDD/SPARCLE: functional classification of proteins via subfamily domain architectures, Nucleic Acids Res., 45(D1): D200–D203

 

Qiu D., Xiao J., Ding X., Xiong M., Cai M., Cao Y., Li X., Xu C., and Wang S., 2007, OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling, Mol. Plant Microbe In., 20(5): 492–499

 

Qu Y., 2019, genome-wide analysis of AAAP gene family of Medicago truncatula and chickpea, 2019, Thesis for M.S., Harbin Normal University, Supervisor: Guo C.J, pp.2–5 (曲越, 2019, 蒺藜苜蓿与鹰嘴豆AAAP基因家族的全基因组分析, 硕士学位论文, 哈尔滨师范大学, 导师: 郭长虹, pp.2–5)

 

Ren X., Chen Z., Liu Y., Zhang H., Zhang M., Liu Q., Hong X., Zhu J.K., and Gong Z., 2010, ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis, Plant J., 63(3): 417–429

 

Richmond T., 2000, A simple modular architecture research tool for the identification of signaling domains,Genome Biol., 1(1): 234–247

 

Robatzek S., 2002, Targets of AtWRKY6 regulation during plant senescence and pathogen defense, Genes Dev., 16(9): 1139–1149

 

Ross C.A., Liu Y., and Shen Q.J., 2007, The WRKY gene family in rice (Oryza sativa), J. Integr. Plant Biol., 49(6): 827–842

 

Rushton P.J., Somssich I.E., Ringler P., and Shen Q.J., 2010, WRKY transcription factors, Trends Plant Sci., 15(5): 247–258.

 

Sayers E.W., Beck J., Bolton E.E., Bourexis D., Brister J.R., Canese K., Comeau D.C., Funk K., Kim S., and Klimke W., 2021, Database resources of the National Center for Biotechnology Information, Nucleic Acids Res., 49(D1): D10–D17

 

Song H., Sun W., Yang G., and Sun J., 2018, WRKY transcription factors in legumes, BMC Plant Biol., 18(1): 243–256

 

Song H., Wang P., Lin J.-Y., Zhao C., Bi Y., and Wang X., 2016, Genome-wide identification and characterization of WRKY gene family in peanut, Front. Plant Sci., 7: 534–549

 

Srivastava R., Kumar S., Kobayashi Y., Kusunoki K., Tripathi P., Kobayashi Y., Koyama H., and Sahoo L., 2018, Comparative genome-wide analysis of WRKY transcription factors in two Asian legume crops: Adzuki bean and Mung bean, Sci. Rep-UK, 8(1): 16971

 

Sun C.Q., Guo Y.L., Li L.Y., Wei J., Zhang J.S., Miao L.Y., Yang S., and Liu G.Z., 2016, Study on the function of rice transcription factor OsWRKY42 in resistance to bacterial blight, Quanguo Nongye Shengwu Huaxue and Fenzi Shengwuxue Yantao Huiyi Wenji (Proceedings of the 15th National Symposium on Agricultural Biochemistry and Molecular Biology) (孙财强, 郭亚璐, 李莉云, 魏健, 张健硕, 缪刘杨, 杨烁, 刘国振, 2016, 水稻转录因子OsWRKY42在抗白叶枯病中的功能研究, 全国农业生物化学与分子生物学第十五届学术研讨会会议文集)

 

Tomooka N., Vaughan D., Moss H., and Maxted N., 2005, The Asian Vigna: genus Vigna subgenus Ceratotropis genetic resources, Asian Vigna Advance Access published 2005

 

Tripathi P., Rabara R.C., and Rushton P.J., 2014, A systems biology perspective on the role of WRKY transcription factors in drought responses in plants, Planta, 239(2): 255–266

 

Ülker B., and Somssich I.E., 2004, WRKY transcription factors: from DNA binding towards biological function, Curr. Opin. Plant Biol., 7(5): 491–498

 

Wang G., Zhang S., Ma X., Wang Y., Kong F., and Meng Q., 2016, A stress-associated NAC transcription factor (SlNAC35) from tomato plays a positive role in biotic and abiotic stresses, Physiol. Plant., 158(1): 45–64

 

Wang M., Huang Q., Lin P., Zeng Q., Li Y., Liu Q., Zhang L., Pan Y., Jiang B., and Zhang F., 2020, The overexpression of a transcription factor gene VbWRKY32 enhances the cold tolerance in Verbena bonariensis, Front. Plant Sci., 10:1746–1760

 

Wang S.P, and Zeng T., 2008, Rice disease resistance relevant gene OsWRKY45-2 and application thereof in improving rice disease resistance, CN20081197309

 

Wang Y.P., Tang H.B., DeBarry J.D., Tan X., Li J.P., Wang X.Y., Lee T. H., Jin H.Z., Marler B., Guo H., Kissinger J.C., and Paterson A.H., 2012, MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity, Nucleic Acids Res., 40(7): e49

 

Wen F., Zhu H., Li P., Jiang M., Mao W., Ong C., and Chu Z., 2014, Genome-wide evolutionary characterization and expression analyses of WRKY family genes in brachypodium distachyon, DNA Res., 21(3): 327–339

 

Xu Z., Raza Q., Xu L., He X., Huang Y., Yi J., Zhang D., Shao H.-B., Ma H., and Ali Z., 2018, GmWRKY49, a salt-responsive nuclear protein, improved root length and governed better salinity tolerance in transgenic Arabidopsis, Front. Plant Sci., 9: 809–820

 

Yan X.H., Wang X.Y., Liu P.Y., Ji C.G., Wang L., Liu X.Q., Li X.R., and Yan H.C., 2021, Research progress on the structure and function of NPR1, Jiangsu Nongye Kexue (Jiangsu Agricultural Science), 49: 46–52 (闫晓寒, 王向尧, 刘培源, 姬朝光, 王丽, 刘雪晴, 李晓瑞, 严汉池, 2021, NPR1结构与功能的研究进展, 江苏农业科学, 49: 46–52)

 

Yin G., Xu H., Xiao S., Qin Y., Li Y., Yan Y., and Hu Y., 2013, The large soybean (Glycine max) WRKY TF family expanded by segmental duplication events and subsequent divergent selection among subgroups, BMC Plant Biol., 13(1): 148–161

 

Yin L.H., Yang Y., Ke X.W., Cui S.P., Zhang J.P., and Zuo Y.H., 2020, Cloning of Adzuki Bean VaWRKY33 gene and its expression analysis in response to rust infection, Ziwu Fenzi Yuzhong (Molecular Plant Breeding), 18: 7301–7308 (殷丽华, 杨阳, 柯希望, 崔素萍, 张金鹏, 左豫虎, 2020, 小豆VaWRKY33基因克隆及其响应锈菌侵染的表达分析, 分子植物育种,18: 7301–7308)

 

Zhen X., Zhang Z. L., Zou X., Yang G., and Komatsu S., 2010, Interactions of two abscisic-acid induced WRKY genes in repressing gibberellin signaling in aleurone cells, Plant J., 46(2): 231–242

    0.625
00120
《分子植物育种》网络版
• 第 19 卷
阅览选项
. 全文 PDF
. 全文 HTML
读者评论
. 评论
作者的其他论文
.
罗永坚
.
刘瑞曦
.
王茹
.
刘相泉
.
熊莉军
.
李吉涛
.
邓志军
相关论文
.
赤豆
.
WRKY
.
GO注释
.
共线性
.
蛋白互作网络
.
生物信息学
服务
. 发表评论