Review and Progress

豆科进化、分类系统研究进展  

黎建辉1,2 , 张洁1,2 , 俞诗莹1 , 王浙茹2 , 刘楚楚2
1诸暨市翠溪生物技术研究院, 诸暨, 311800;
2浙江农林大学暨阳学院生命科学研究所, 诸暨, 311800
作者    通讯作者
豆科基因组学与遗传学, 2023 年, 第 14 卷, 第 1 篇   
收稿日期: 2023年06月29日    接受日期: 2023年07月14日    发表日期: 2023年07月19日
© 2023 BioPublisher 生命科学中文期刊出版平台
本文首次以英文发表在 Legume Genomics and Genetics上。现依据版权所有人授权的许可协议,采用 Creative Commons Attribution License 协议对其进行授权,用中文再次发表与传播。只要对原作有恰当的引用, 版权所有人允许并同意第三方无条件的使用与传播。如果读者对中文含义理解有歧义,
推荐引用:

黎建辉, 张洁, 俞诗莹, 王浙茹, 刘楚楚, 2023, 豆科进化、分类系统研究进展, 豆科基因组学与遗传学, 14(1): 1-7 (doi: 10.5376/lgg.cn.2023.14.0001)

(Li J.H., Zhang J., YuS.Y., WangleZ.R., and Liu C.C., 2023, Research progress of evolution and classification systems in the family of leguminosae, Douke Jiyin Zuxue Yu Yichuanxue (Legume Genomics and Genetics), 14(1): 1-7 (doi: 10.5376/lgg.cn.2023.14.0001))

摘要

豆科(Leguminosae sp.)为双子叶植物纲、蔷薇目支下的一个科,属于乔木、灌木、亚灌木或草本,直立或攀援,常有能固氮的根瘤植物。已发现的化石证据表明豆科大约在6 000万年前就已开始多样化,进化至今,豆科已是物种数量第三大的陆地植物家族,仅次于兰科和菊科,从经济上讲,其重要性仅次于禾本科植物。关于豆科分类系统的研究一直是世界各地研究小组争论、研究的对象,直到2017年,豆科系统发育工作组(LPWG)基于叶绿体matK序列数据,构建了一棵迄今为止取样最全(约91%的属和20%的种)的豆科系统发育树,并结合形态证据,提出了6亚科的新分类系统,预示着关于豆科的分类研究迈出了里程碑式的一步。

关键词
豆科;多样化;分类系统; LPWG

豆科英文名为Fabaceae,或者Leguminosae,“Fabaceae”这个名字来自已经不复存在的Faba属,Faba属现在被包含在Vicia中。术语“faba”来自拉丁语,似乎只是指“豆”。Leguminosae则是一个比较久远,但仍是有效的名称。这些植物的果实,称为豆类。

 

豆科是物种数量第三大的陆地植物家族,仅次于兰科和菊科,约有770属和约19 500种已知物种,约占所有开花植物种类的7% (Magallón and Sanderson, 2001; Judd et al., 2010; LPWG, 2013a; Christenhusz and Byng, 2016)。五个最大的属分别是Astragalus (超过3 000种),Acacia (超过1 000种),Indigofera (约700种),Crotalaria (约700种)和Mimosa (约400种),约占所有豆科植物种类的四分之一。

 

从经济上讲,豆科植物的重要性仅次于禾本科植物。例如,据估计,从1990年到2012年世界豆类出口增加了一倍多,从660万吨增加到1 340万吨,2012年豆类出口价值估计为95亿美元(粮农组织[FAO]: http://www.fao.org/pulses-2016/en/)。联合国大会将2016年定为国际豆类年,以提高人们对豆类的营养价值、对粮食安全、可持续农业的重要性以及对减少生物多样性丧失和气候变化的认识。豆科植物是重要的粮食作物,是高营养蛋白质和微量营养素的来源,可以极大地有益于健康和生计,尤其是在发展中国家(Yahara et al., 2013)。

 

自农业开始以来,豆科植物已经在世界不同地区与禾本科植物一起驯化,并在其早期农业发展中发挥了关键作用(Gepts et al., 2005; Hancock, 2012)。许多豆科植物几千年来一直是人类的主食,它们的使用与人类的进化密切相关(Dimitri, 1987),在当今世界,豆科植物在制造木材、油和树脂、清漆、油漆、染料、药品等领域具有重要的作用,同样也是园林绿化的不可或缺的一部分。在温带和热带地区,豆科植物作为饲料和绿肥也具有独特的重要性。

 

豆科植物分布广泛,在全球几乎所有的生物群落中都是重要的生态组成成分,甚至在最极端的生境中也有分布(Schrire et al., 2005)。在非洲、南美洲和亚洲的热带森林中,它们是构成物种多样性和丰度的重要元素(Banda et al., 2016),在整个热带地区,它们主宰干燥森林和热带稀树大草原,同样的情况也发生在地中海地区,沙漠和温带地区,高纬度和高海拔地区。豆科植物可以是大型的乔木、多年生或一年生草本植物、一年生或多年生的有卷须攀缘植物、灌木、木本藤本植物,以及较少见的水生植物。豆科植物花的对称性涵盖了从辐射对称到两侧对称和非对称的全部范围,这些花适应广泛的传粉媒介,如昆虫、鸟类和蝙蝠。

 

大多数豆科植物与土壤根瘤菌共生固定大气氮的能力可能是该家族最著名的生态特征,然而,并非所有的豆类都与固氮细菌有关。总而言之,该家族在形态、生理和生态上都异常多样化,是植物进化多样化的最显著例子之一。所有这些特征使得豆科生物学家对豆科的生物、家族多样性和进化、功能特征的进化以及家族的生态和生物地理学一直保持着浓厚的兴趣(Stirton and Zarucchi, 1989; Lavin et al., 2004; Champagne et al., 2007; Simon et al., 2009; Doyle, 2011; Simon and Pennington, 2012; Koenen et al., 2013; Moncrieff et al., 2014; Dugas et al., 2015)。

 

1豆科进化

Fabales包含约7.3%的双子叶植物物种,而这种多样性的大部分仅包含在该目所包含的四个科之一:Fabaceae中,该分支还包括Polygalaceae,Surianaceae和Quillajaceae。Fabales起源可追溯到9 400万至8 900万年前,而开始多样化则是在约7 900万至7 400万年前(Angiosperm Phylogeny Website. Version 7, May 2006. http://www.mobot.org/MOBOT/Research/APweb/orders/fabalesweb.htm#Fabaceae managed by Stevens, P. F)。事实上,豆科植物在第三纪早期已经多样化,与其他属于开花植物的科成为现代地球生物群中普遍存在的一部分(Herendeen et al., 1992; Lewis et al., 2005)。

 

豆科植物有丰富多样的化石记录,特别是在第三纪,这一时期的花、果、叶、木和花粉化石在许多地方都有发现(Crepet and Taylor, 1985; Crepet and Taylor, 1986; Herendeen, 2001)。而最早确定属于豆科的化石出现在古新世晚期(约5 600万年前) (Herendeen and Wing, 2001; Wing et al., 2004)。Cesalpinioideae,Papilionoideae和Mimosoideae是传统上被认为是代表豆科植物成员的3个亚科,以及这些亚科中的数量庞大的演化支成员——例如genistoides,发现在随后的一段时期内出现,从5 500万至5 000万年前开始(Herendeen et al., 1992)。事实上,从始新世中期到晚期的化石记录中,已经发现了代表豆科主要谱系的各种类群,表明现代豆科的大多数类群已经存在,并在这一时期出现了广泛的多样性(Herendeen et al., 1992)。

 

因此,豆科大约在6 000万年前开始多样化,而最重要的分支大约在5 000万年前分离,其中,主要的Cesalpinioideae分支为5600至3400万年前,而Mimosoideae基础族群则为(4 400±260)万年前(Lavin et al., 2005; Bruneau et al., 2008)。Mimosoideae和Faboideae之间的划分可以追溯到5 900万至3 400万年前,其中Faboideae基础族群为(5 860±20)万年前(Wikström et al., 2001)。尽管每个属内的物种多样化相对较晚,但仍有可能确定Faboideae内某些类群的分化年代。例如,Astragalus在大约1 600万到1 200万年前从Oxytropis中分离出来,此外,Neoastragalus的非整倍体物种的分离始于400万年前,Inga是Papilionoideae的另一个属,约有350种,在过去200万年中似乎发生了分化(Wojciechowski et al., 1993; Wojciechowski, 2003; Wojciechowski, 2005; Wojciechowski et al., 2006)。

 

根据化石和系统发育的证据,已有证据表明豆科植物最初是在古近纪时期沿Tethys seaway的干旱或半干旱地区进化而来的(Schrire et al., 2005)。然而,另一些人认为,还不能排除非洲(甚至美洲)是该族群的起源(Doyle and Luckow, 2003; Pan et al., 2010)。

 

目前关于根瘤所需基因进化的假设是豆科植物在多倍体事件后从其他途径获得(Yokota and Hayashi, 2011)。已经有几种不同的途径被认为是供给根瘤所需复制基因的途径,这些途径的主要供体为丛枝菌根共生基因、花粉管形成基因和血红蛋白基因,而参与植物-细菌识别的SYMRK基因则是丛枝菌根途径与根瘤化途径的主要共享基因之一(Markmann et al., 2008)。花粉管的生长与侵染线的生长相似,侵染线呈极性生长,与花粉管向胚珠的极性生长相似,这两种途径均需要相同类型的果胶降解细胞壁酶(Rodríguez-Llorente et al., 2004)。根瘤中的酶在固氮过程中需要大量的ATP,但同时对自由氧又非常敏感,因此,为了解决这一矛盾的情况,这些植物表达一种叫leghaemoglobin的血红蛋白,这种基因被认为是在多倍体事件后获得(Downie, 2005)。

 

2豆科分类系统构建

豆科植物的系统发育一直是世界各地研究小组的研究对象。这些研究小组利用形态学、DNA数据(叶绿体内含子trnL, 叶绿体基因rbcLmatK, 或核糖体间隔子ITS)和支链分析来研究该家族不同谱系之间的关系(Lavin et al., 1990; Käss and Wink, 1996; Sanderson and Wojciechowski, 1996; Käss and Wink, 1997; Bruneau et al., 2008; Cardoso et al., 2013; Félicien et al., 2018)。

 

早期学者主要依据豆科的形态学对其分类,该传统分类方法延续使用了很长的一段时间,典型的就是3亚科分类系统。但是随着科技的不断发展,分子系统学崛起,传统分类系统的弊端逐渐显现出来,此时学者意识到3亚科分类系统是不合理的,迫切需要一个新的分类系统来取代原有的系统。在2010年的时候,成立的豆科系统发育工作组(Legume Phylogeny Working Group (LPWG))就是针对研究新型分类系统,并在2017年正式提出了6亚科分类系统,一直沿用至今。

 

3豆科的3亚科分类系统

与一些其他大型被子植物家族相反,如禾本科(Grass Phylogeny Working Group, 2001; Grass Phylogeny Working Group, 2012)、菊科(Panero and Funk, 2002),豆科植物亚科级一直是一个广泛使用的中心级别。在传统上习惯根据花形态的不同分为含羞草亚科(Mimosoideae)、云实亚科(Caesalpinioideae)和蝶形花亚科(Papilionoideae)3个亚科(Hutchinson, 1964; Cronquist, 1981)。这3个亚科的首次命名是在1825年,Candolle将豆科细分为四个亚目(=亚科),除了第四个“亚目”Swartzieae外,其余3个“亚目”则为今天的亚科(Candolle, 1825)。Bentham (1865)对这3亚科分类系统进行了详细的阐述,其分类成为了随后140年豆科植物家族分类的基础(Taubert, 1891; Lewis et al., 2005)。

 

Hutchinson将3亚科提升至科级(Hutchinson, 1926; Hutchinson, 1964),而在豆科系统学进展的第一卷中,这三组被认为是亚科(Polhill and Raven, 1981)。不管等级如何,自19世纪以来,这3个类群一直是被用作是鉴定和分类豆科植物的标准,在植物学、植物区系学和分类学课程中广泛教授,并且一直被世界各地的农学家,园艺学家和生态学家使用。

 

4探讨3亚科分类系统存在的问题

3亚科分类系统的分类基础基本上是基于一组显著的花特征,尤其是花瓣排列模式(Caesalpinioideae呈上升覆瓦状; Mimosoideae呈镊合状; Papilionoideae呈下降覆瓦状)和花的对称性(Caesalpinioideae为不确定性对称, 图1; 图2; 图3; Mimosoideae为辐射对称,图4; Papilionoideae为两侧对称, 图5; 图6; 图7)。虽然这些花的一些特征可能对定义Papilionoideae和Mimosoideae很有用,但它们在定义传统的Caesalpinioideae存在很大局限性(Tucker, 2003; Bruneau et al., 2014)。此外,即使对于Papilionoideae和Mimosoideae,这些花的大部分特征现在被认为是同源的(Pennington et al., 2000)。例如,以辐射对称花为特征的单个种或演化枝在Papilionoideae的基础上独立演化多次(Pennington et al., 2000; Cardoso et al., 2012b; Cardoso et al., 2013a; Ramos et al., 2016) (图5; 图6; 图7)。类似地,虽然辐射对称是Mimosoideae最显著的特征,但分布在MCC (Mimosoideae-Caesalpinieae-Cassieae)演化枝上密切相关的谱系也具有辐射对称的花(图3)。

 

图1 A-F, Cercidoideae; G, Duparquetioideae; H-L, Dialioideae. A, Cercis siliquastrum; B, Bauhinia galpinii; C, Bauhinia divaricata; D, Piliostigma thonningii; E, Griffonia physocarpa; F, Schnella cupreonitens; G, Duparquetia orchidacea; H, Zenia insignis; I, Apuleia leiocarpa; J, Poeppigia procera; K, Distemonanthus benthamianus; L, Kalappia celebica (摘自LPWG, 2017)

Figure 1 A-F, Cercidoideae; G, Duparquetioideae; H-L, Dialioideae. A, Cercis siliquastrum; B, Bauhinia galpinii; C, Bauhinia divaricata; D, Piliostigma thonningii; E, Griffonia physocarpa; F, Schnella cupreonitens; G, Duparquetia orchidacea; H, Zenia insignis; I, Apuleia leiocarpa; J, Poeppigia procera; K, Distemonanthus benthamianus; L, Kalappia celebica (Adopted from LPWG, 2017)

 

图2 Detarioideae. A, Goniorrhachis marginata; B, Hymenaea stigonocarpa; C, Daniellia ogea; D, Peltogyne chrysopis; E, Brodriguesia santosii; F, Brownea longipedicellata; G, Amherstia nobilis; H, Brachycylix vageleri; I, Cryptosepalum tetraphyllum; J, Paramacrolobium coeruleum; K, Gilbertiodendron quinquejugum; L, Aphanocalyx pteridophyllus (摘自LPWG, 2017)

Figure 2 Detarioideae. A, Goniorrhachis marginata; B, Hymenaea stigonocarpa; C, Daniellia ogea; D, Peltogyne chrysopis; E, Brodriguesia santosii; F, Brownea longipedicellata; G, Amherstia nobilis; H, Brachycylix vageleri; I, Cryptosepalum tetraphyllum; J, Paramacrolobium coeruleum; K, Gilbertiodendron quinquejugum; L, Aphanocalyx pteridophyllus (Adopted from LPWG, 2017)

 

图3 Caesalpinioideae I. A, Gleditsia amorphoides; B, Pterogyne nitens; C, Batesia floribunda; D, Moldenhawera blanchetiana; E, Cassia fistula; F, Tachigali rugosa; G, Arapatiella psilophylla; H, Caesalpinia cassioides; I, Arquita grandiflora; J, Delonix floribunda; K, Campsiandra comosa; L, Dimorphandra pennigera (摘自LPWG, 2017)

Figure 3 Caesalpinioideae I. A, Gleditsia amorphoides; B, Pterogyne nitens; C, Batesia floribunda; D, Moldenhawera blanchetiana; E, Cassia fistula; F, Tachigali rugosa; G, Arapatiella psilophylla; H, Caesalpinia cassioides; I, Arquita grandiflora; J, Delonix floribunda; K, Campsiandra comosa; L, Dimorphandra pennigera (Adopted from LPWG, 2017)

 

图4 Caesalpinioideae II. A, Chidlowia sanguinea; B, Entada chrysostachys; C, Gagnebina commersoniana; D, Lemurodendron capuronii; E, Neptunia plena; F, Mimosa benthamii; G, Acacia dealbata; H, Senegalia sakalava; I, Inga calantha; J, Inga grazielae; K, Macrosamanea amplissima; L, Albizia grandibracteata (摘自LPWG, 2017)

Figure 4 Caesalpinioideae II. A, Chidlowia sanguinea; B, Entada chrysostachys; C, Gagnebina commersoniana; D, Lemurodendron capuronii; E, Neptunia plena; F, Mimosa benthamii; G, Acacia dealbata; H, Senegalia sakalava; I, Inga calantha; J, Inga grazielae; K, Macrosamanea amplissima; L, Albizia grandibracteata (Adopted from LPWG, 2017)

 

图5 Papilionoideae I. A, Castanospermum australe; B, Petaladenium urceoliferum; C, Pterodon abruptus; D, Swartzia acutifolia; E, Trischidium molle; F, Exostyles venusta; G, Harleyodendron unifoliolatum; H, Haplormosia monophylla; I, Ormosia lewisii; J, Harpalyce lanata; K, Leptolobium brachystachyum; L, Camoensia brevicalyx (摘自LPWG, 2017)

Figure 5 Papilionoideae I. A, Castanospermum australe; B, Petaladenium urceoliferum; C, Pterodon abruptus; D, Swartzia acutifolia; E, Trischidium molle; F, Exostyles venusta; G, Harleyodendron unifoliolatum; H, Haplormosia monophylla; I, Ormosia lewisii; J, Harpalyce lanata; K, Leptolobium brachystachyum; L, Camoensia brevicalyx (Adopted from LPWG, 2017)

 

图6 Papilionoideae II. A, Uleanthus erythrinoides; B, Cadia purpurea; C, Sophora cf. microphylla; D, Virgilia divaricata; E, Cyclopia pubescens; F, Lupinus weberbaueri; G, Dalea botterii; H, Errazurizia megacarpa; I, Zornia reticulata; J, Poiretia tetraphylla; K, Pterocarpus amazonum; L, Baphia leptobotrys (摘自LPWG, 2017)

Figure 6 Papilionoideae II. A, Uleanthus erythrinoides; B, Cadia purpurea; C, Sophora cf. microphylla; D, Virgilia divaricata; E, Cyclopia pubescens; F, Lupinus weberbaueri; G, Dalea botterii; H, Errazurizia megacarpa; I, Zornia reticulata; J, Poiretia tetraphylla; K, Pterocarpus amazonum; L, Baphia leptobotrys (Adopted from LPWG, 2017)

 

图7 Papilionoideae III. A, Chorizema glycinifolium; B, Bossiaea walkeri; C, Mucuna gigantea; D, Chadsia longidentata; E, Canavalia brasiliensis; F, Erythrina velutina; G, Gliricidia robusta; H, Poissonia weberbaueri; I, Anthyllis montana; J, Astragalus uniflorus; K, Trifolium rubens; L, Pisum sativum subsp. Biflorum (摘自LPWG, 2017)

Figure 7 Papilionoideae III. A, Chorizema glycinifolium; B, Bossiaea walkeri; C, Mucuna gigantea; D, Chadsia longidentata; E, Canavalia brasiliensis; F, Erythrina velutina; G, Gliricidia robusta; H, Poissonia weberbaueri; I, Anthyllis montana; J, Astragalus uniflorus; K, Trifolium rubens; L, Pisum sativum subsp. Biflorum (Adopted from LPWG, 2017)

 

无论分类单元或基因取样如何,豆科植物作为单系群在所有的分子系统发育分析中都得到了强有力的支持(LPWG, 2013a)。尽管豆科植物家族的近源物种存在不确定性(Dickison, 1981; APG III, 2009; Bello et al., 2009),但自从家族成立以来,其单一性和独特性从未在形态学上受到质疑(Lewis et al., 2005; Bello et al., 2012)。除了少数例外,这个科最显著的特征是雌蕊通常由单心皮所组成,子房上位,1室,基部常有柄或无,沿腹缝线具侧膜胎座,胚珠2至多颗,悬垂或上升,排成互生的2列(Lewis et al., 2005)。然而,豆科系统学家早就意识到目前的亚科分类与新出现的系统发育结果之间的差异(Irwin, 1981; Käss and Wink, 1996; Doyle et al., 1997),最出名的是并系群Caesalpinioideae,其许多族与亚族都非单系群,这意味着这些分支的系统发育结构并未直接反映在当前的分类中(Lewis et al., 2005)。

 

因此,豆科分类学界需要豆科新分类系统来取代传统3亚科分类系统也变得势在必行。

 

5豆科的6亚科分类系统

由于豆科分类学界对于支序分类体系比较热衷,2010年,豆科系统发育工作组(Legume Phylogeny Working Group (LPWG))成立,该国际团体致力于推动豆科系统发育研究,其主要任务是提出豆科系统发育研究概要和计划安排以及拟要解决的核心问题。LPWG于2013年,在南非约翰内斯堡召开第6届国际豆科植物会议,其主题为“豆科新分类系统”,于是豆科分类系统的重新修订被正式提上议事日程(LPWG, 2013)。

 

直至2017年,LPWG基于叶绿体matK序列数据,构建了一棵迄今为止取样最全(约91%的属和20%的种)的豆科系统发育树,并结合形态证据,提出了六个亚科的新分类系统,该分类系统中,仅传统的Papilionoideae (图5; 图6; 图7)被保留;传统的Mimosoideae不复存在,而成为新Caesalpinioideae (图3; 图4)一个分支mimosoid clade;除保留在新Caesapinioideae中的类群,原Caesapinioideae其余四个分支新拟为四个亚科:即Cercidoideae (图1A-F)、Detarioideae Burmeist (图2)、Dialioideae (图1H-L)和Duparquetioideae (图1G) (LPWG, 2017)。

 

毋庸置疑新的分类系统对豆科分类学、基因组学、发育生物学和进化生物学研究将会产生重要影响,而且随着研究不断深入,豆科的分类系统将会愈发完善。

 

6展望

不论是从经济价值,还是学术上的研究价值,豆科植物的重要性不言而喻。尤其是豆科植物几乎包罗了绝大部分的植物的形态、生长、发育等多个维度,如其花的形态、分布范围等,是植物多样性研究最好的物种之一。关于豆科植物分类系统的研究也一直都在不断探寻和摸索中,分类系统从3亚科过渡到6亚科,越来越合理,但是其中依然存在较多的争议和不能圆满解决的问题。不过科学是在不断进步的,豆科分类学的研究会进一步深化,会更加合理化,这不仅仅对豆科本身有重要的意义,同时对研究植物进化多样性的研究也起到重大的参考价值。

 

作者贡献

黎建辉负责文献收集、论文写作;张洁是项目负责人,负责论文修改和定稿;俞诗莹负责论文翻译;王浙茹、刘楚楚负责修改和校对。全体作者都阅读并同意最终的文本。

 

致谢

本研究由诸暨市翠溪生物技术研究院《翠溪创新研发项目基金》资助。

 

参考文献

APG (Angiosperm Phylogeny Group) III, 2009, An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III, Bot. J. Linn. Soc., 161: 105-121.

https://doi.org/10.1111/j.1095-8339.2009.00996.x

 

Banda K., Delgado-Salinas A., Dexter K. G., Linares-Palomino R., Oliveira-Filho A., Prado D., Weintritt J., Acevedo-Rodríguez P., Adarve J., Álvarez E., Aranguren B.A., Arteaga J.C., Aymard G., Castaño A., Ceballos-Mago N., Cogollo Á., Cuadros H., Delgado F., Devia W., Dueñas H., Fajardo L., Fernández Á., Fernández M.Á., Franklin J., Freid E.H., Galetti L.A., Gonto R., González-M R., Graveson R., Helmer E.H., Idárraga Á., López R., Marcano-Vega H., Martínez O.G., Maturo H.M., McDonald M., McLaren K., Melo O., Mijares F., Mogni V., Molina D., Moreno N.D., Nassar J.M., Neves D.M., Oakley L.J., Oatham M., Olvera-Luna A.R., Pezzini F.F., Dominguez O.J., Ríos M.E., Rivera O., Rodríguez N., Rojas A., Särkinen T., Sánchez R., Smith M., Vargas C., Villanueva B., and Pennington R.T., 2016, Plant diversity patterns in neotropical dry forests and their conservation implications, Science, 353(6306): 1383-1387.

https://doi.org/10.1126/science.aaf5080

 

Bello M.A., Bruneau A., Forest F., and Hawkins J.A., 2009, Elusive relationships within order Fabales: Phylogenetic analyses using matK and rbcL sequence data, Syst. Bot., 34: 102-114.

https://doi.org/10.1600/036364409787602348

 

Bello M.A., Rudall P.J., and Hawkins J.A., 2012, Combined phylogenetic analyses reveal interfamilial relationships and patterns of floral evolution in the eudicot order Fabales, Cladistics, 28: 393-421

https://doi.org/10.1111/j.1096-0031.2012.00392.x

 

Bentham G., 1865, Leguminosae, Pp. 434-600 in: Bentham, G., and Hooker J.D., (eds.), Genera plantarum, vol. 1(2). Londini [London]: venit apud Lovell Reeve.

 

Bruneau A., Klitgaard B.B., Prenner G., Fougère-Danezan M., and Tucker S.C., 2014, Floral evolution in the Detarieae (Leguminosae): Phylogenetic evidence for labile floral development in an early diverging legume lineage, Int. J. Pl. Sci., 175: 392-417.

https://doi.org/10.1086/675574

 

Bruneau A., Mercure M., Lewis G.P., and Herendeen P.S., 2008, Phylogenetic patterns and diversification in the caesalpinioid legumes, Botany, 86(7): 697-718.

https://doi.org/10.1139/B08-058

 

Bruneau A., Mercure M., Lewis G.P., and Herendeen P.S., 2008, Phylogenetic patterns and diversification in the caesalpinioid legumes, Botany, 86(7): 697-718.

https://doi.org/10.1139/B08-058

 

Candolle A., de 1825, Prodromus systematis naturalis regni vegetabilis, vol. 2. Parisiis [Paris]: sumptibus sociorum Treuttel et Würtz.

 

Cardoso D., Pennington R.T., de Queiroz L.P., Boatwright J.S., Van Wykd B.E., Wojciechowskie M.F., and Lavin M., 2013, Reconstructing the deep-branching relationships of the papilionoid legumes, S. Afr. J. Bot., 89: 58-75.

https://doi.org/10.1016/j.sajb.2013.05.001

 

Cardoso D., Queiroz L.P. de, Lima H.C. de, Suganuma E., Van den Berg C., and Lavin M., 2013a, A molecular phylogeny of the vataireoid legumes underscores floral evolvability that is general to many early-branching papilionoid lineages, Amer. J. Bot., 100: 403-421.

https://doi.org/10.3732/ajb.1200276

 

Cardoso, D., Lima, H.C. de, Rodrigues, R.S., Queiroz, L.P. de, Pennington, R.T. & Lavin, M. 2012b. The realignment of Acosmium sensu stricto with the Dalbergioid clade (Leguminosae, Papilionoideae) reveals a proneness for independent evolution of radial floral symmetry among early branching papilionoid legumes. Taxon 61: 1057-1073.

https://doi.org/10.1002/tax.615011

 

Champagne C.E.M., Goliber T.E., Wojciechowski M.F., Mei R.W., Townsley B.T., Wang K., Paz M.M., Geeta R., and Sinha N.R., 2007, Compound leaf development and evolution in the legumes, Pl. Cell., 19: 3369-3378.

https://doi.org/10.1105/tpc.107.052886

 

Christenhusz M.J.M., and Byng J.W., 2016, The number of known plants species in the world and its annual increase, Phytotaxa, 261(3): 201-207.

https://doi.org/10.11646/phytotaxa.261.3.1

 

Crepet W.L., and Taylor D.W., 1985, The Diversification of the Leguminosae: First Fossil Evidence of the Mimosoideae and Papilionoideae, Science, 228(4703): 1087-1089.

https://doi.org/10.1126/science.228.4703.1087

 

Crepet W.L., and Taylor D.W., 1986, Primitive mimosoid flowers from the Palaeocene-Eocene and their systematic and evolutionary implications, American Journal of Botany, 73(4): 548-563.

https://doi.org/10.1002/j.1537-2197.1986.tb12075.x

 

Cronquist A., 1981, An integrated system of classification of flowering plants, New York: Columbia University Press.

 

Dickison W.C., 1981, The evolutionary relationships of the Leguminosae, Pp. 35-54 in: Polhill, R.M. & Raven, P.H. (eds.), Advances in legume systematics, part 1. Richmond, U.K.: Royal Botanic Gardens, Kew.

 

Dimitri, M. 1987. Enciclopedia Argentina de Agricultura y Jardinería. Tomo I. Descripción de plantas cultivadas. Editorial ACME S.A.C.I., Buenos Aires. pages: 467-538.

 

Downie J.A., 2005, Legume haemoglobins: symbiotic nitrogen fixation needs bloody nodules, Current Biology, 15(6): R196-R198.

https://doi.org/10.1016/j.cub.2005.03.007

 

Doyle J.J., 2011, Phylogenetic perspectives on the origins of nodulation, Molec. Pl.-Microbe Interact, 24: 1289-1295.

https://doi.org/10.1094/MPMI-05-11-0114

 

Doyle J.J., and Luckow M.A., 2003, The rest of the iceberg, Legume diversity and evolution in a phylogenetic context, Plant Physiology, 131(3): 900-910.

https://doi.org/10.1104/pp.102.018150

 

Doyle J.J., Doyle J.L., Ballenger J.A., Dickson E.E., Kajita T., and Ohashi H., 1997, A phylogeny of the chloroplast gene rbcL in the Leguminosae: Taxonomic correlations and insights into the evolution of nodulation, Amer. J. Bot., 84: 541-554.

https://doi.org/10.2307/2446030

 

Dugas D.V., Hernandez D., Koenen E.J.M., Schwarz E., Straub S., Hughes C.E., Jansen R.K., Nageswara-Rao M., Staats M., Trujillo J.T., Hajrah N.H., Alharbi N.S., Al-Malki A.L., Sabir J.S.M., and Bailey C.D., 2015, Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP. Sci. Rep., 5: 16958.

https://doi.org/10.1038/srep16958

 

Félicien Tosso., Hardy O.J., Doucet J.L., Kasso D., and Jérémy M., 2018, Evolution in the amphi-atlantic tropical genus guibourtia (fabaceae, detarioideae), combining NGS phylogeny and morphology. Molecular Phylogenetics and Evolution, 120: 83-93.

https://doi.org/10.1016/j.ympev.2017.11.026

 

Gepts P., Beavis W.D., Brummer E.C., Shoemaker R.C., Stalker H.T., Weeden N.F., andYoung N.D., 2005, Legumes as a model plant family: G enomics for food a nd feed r eport of the crosslegume advances through genomics conference, Pl. Physiol., 137: 1228-1235.

https://doi.org/10.1104/pp.105.060871

 

Grass Phylogeny Working Group II, 2012, New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins, New Phytol., 193: 304-312.

https://doi.org/10.1111/j.1469-8137.2011.03972.x

 

Grass Phylogeny Working Group, 2001, Phylogeny and subfamilial classification of the grasses (Poaceae), Ann. Missouri Bot. Gard., 88: 373-457.

https://doi.org/10.2307/3298585

 

Hancock J.F. 2012. Plant evolution and the origin of crop species, ed. 3. Wallingford, U.K. & Cambridge, U.S.A.: CAB International.

https://doi.org/10.1079/9781845938017.0000

 

Herendeen P.S., 2001, The fossil record of the Leguminosae: Recent advances. In Legumes down under: The Fourth International Legume Conference, Abstracts, pp. 34-35.

 

Herendeen P.S., and Wing S., 2001, Papilionoid legume fruits and leaves from the Paleocene of northwestern Wyoming, Proceedings of Botany, pp. 12-16.

 

Herendeen P.S., Crepet W.L., and Dilcher D.L., 1992, The fossil history of the Leguminosae: phylogenetic and biogeographic implications, pp. 303-316.

 

Hutchinson J., 1926, The families of flowering plants, vol. 1, Dicotyledons. London: MacMillan.

https://doi.org/10.2307/3901895

 

Hutchinson J., 1964, The genera of flowering plants (Angiospermae), vol. 1. Oxford: Oxford University Press.

 

Irwin H.S., 1981, Preface. Pp. vii-xi in: Polhill, R.M. & Raven, P.H. (eds.), Advances in legume systematics, part 1. Richmond, U.K.: Royal Botanic Gardens, Kew.

 

Judd W.S., Campbell C.S., Kellogg E.A., Stevens P.F., Donoghue M.J., 2010, Plant systematics: a phylogenetic approach, Cladistics-the International Journal of the Willi Hennig Society, 24(5): 848-850.

https://doi.org/10.1111/j.1096-0031.2008.00212.x

 

Käss E., and Wink M., 1996, Molecular evolution of the Leguminosae: phylogeny of the three subfamilies based on rbcL sequences, Biochemical Systematics and Ecology, 24(5): 365-378

https://doi.org/10.1016/0305-1978(96)00032-4

 

Käss E., and Wink M., 1996, Molecular evolution of the Leguminosae: Phylogeny of the three subfamilies based on rbcL-sequences, Biochem. Syst. Ecol., 24: 365-378.

https://doi.org/10.1016/0305-1978(96)00032-4

 

Käss E., and Wink M., 1997, Phylogenetic relationships in the Papilionoideae (Family Leguminosae) based on nucleotide sequences of cpDNA (rbcL) and ncDNA (ITS1 and 2), Mol. Phylogenet. Evol., 8(1): 65-88.

https://doi.org/10.1006/mpev.1997.0410

 

Koenen E.J.M., De Vos J.M., Atchison G.W., Simon M.F., Schrire B.D., Souza E.R. de, Queiroz, L.P. de, and Hughes C.E., 2013, Exploring the tempo of species diversification in legumes, S. African J. Bot., 89: 19-30.

https://doi.org/10.1016/j.sajb.2013.07.005

 

Lavin M., Doyle J.J., and Palmer J.D., 1990, Evolutionary significance of the loss of the chloroplast-DNA inverted repeat in the Leguminosae subfamily Papilionoideae, Evolution, 44(2): 390-402.

https://doi.org/10.1111/j.1558-5646.1990.tb05207.x

 

Lavin M., Herendeen P.S., and Wojciechowski M.F., 2005, Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary, Systematic biology, 54(4): 575-594.

https://doi.org/10.1080/10635150590947131

 

Lavin M., Schrire B., Lewis G., Pennington R.T., Delgado-Salinas A., Thulin M., Hughes C., Beyra-Matos A., and Wojciechowski M.F., 2004, Metacommunity process rather than continental tectonic history better explains geographically structured phylogenies in legumes. Philos, Trans., Ser. B, 359: 1509-1522.

https://doi.org/10.1098/rstb.2004.1536

 

Lewis G., Schrire B., Mackinder B., and Lock M., (eds.) 2005, Legumes of the World. Richmond, U.K.: Royal Botanic Gardens, Kew.

 

Lewis G., Schrire B., Mackinder B., and Lock M., 2005, Legumes of the world, The Royal Botanic Gardens, Kew, Reino Unido, pp. 577.

 

LPWG, Legume Phylogeny Working Group, 2013a, Legume phylogeny and classification in the 21st century: Progress, prospects and lessons for other species-rich clades, Taxon 62: 217-248.

https://doi.org/10.12705/622.8

 

Magallón S.A., and Sanderson M.J., 2001, Absolute diversification rates in angiosperm clades, Evolution, 55(9): 1762-1780.

https://doi.org/10.1111/j.0014-3820.2001.tb00826.x

 

Markmann K., Giczey G., and Parniske M., 2008, Functional adaptation of a plant receptor-kinase paved the way for the evolution of intracellular root symbioses with bacteria, PLoS biology, 6(3): e68.

https://doi.org/10.1371/journal.pbio.0060068

 

Moncrieff G.R., Lehmann C.E.R., Schnitzler J., Gambiza J., Hiernaux P., Ryan C.M., Shackleton C.M., Williams R.J., and Higgins S.I. 2014, Contrasting architecture of key African and Australian savanna tree taxa drives intercontinental structural divergence, Global Ecol. Biogeogr., 23: 1235-1244.

https://doi.org/10.1111/geb.12205

 

Pan A.D., Jacobs B.F., and Herendeen P.S., 2010, Detarieae sensu lato (Fabaceae) from the Late Oligocene (27.23 Ma) Guang River flora of north-western Ethiopia, Botanical Journal of the Linnean Society, 163(1): 44-54.

https://doi.org/10.1111/j.1095-8339.2010.01044.x

 

Panero J.L., and Funk V.A., 2000, Toward a phylogenetic subfamilial classification for the Compositae (Asteraceae), Proc. Biol. Soc.Wash., 115: 909-922.

 

Pennington R.T., Klitgaard B.B., Ireland H., and Lavin M., 2000, Version of Record TAXON 66.

 

LPWG • Phylogeny and classification of the Leguminosae 74 New insights into floral evolution of basal Papilionoideae from molecular phylogenies. Pp. 233-248 in: Herendeen, P.S. and Bruneau, A. (eds.), Advances in legume systematics, part 9. Richmond, U.K.: Royal Botanic Gardens, Kew.

 

Ramos G., Lima H.C. de, Prenner G., Queiroz L.P. de, Zartman C.E., and Cardoso D., 2016, Molecular systematics of the Amazonian genus Aldina, a phylogenetically enigmatic ectomycorrhizal lineage of papilionoid legumes, Molec. Phylogen. Evol., 97: 11-18.

https://doi.org/10.1016/j.ympev.2015.12.017

 

Rodríguez‐Llorente I.D., Pérez‐Hormaeche J., Mounadi K.E., Dary M., Caviedes M.A., Cosson V., and Palomares A.J., 2004, From pollen tubes to infection threads: recruitment of Medicago floral pectic genes for symbiosis, The Plant Journal, 39(4): 587-598.

https://doi.org/10.1111/j.1365-313X.2004.02155.x

 

Sanderson M.J., and Wojciechowski M.F., 1996, Diversification rates in a temperate legume clade: are there "so many species" of Astragalus (Fabaceae)?, Am. J. Bot., 83(11): 1488-1502.

https://doi.org/10.1002/j.1537-2197.1996.tb13942.x

 

Schrire B.D., Lavin M., and Lewis G.P. 2005, Global distribution patterns of the Leguminosae: Insights from recent phylogenies, Biol. Skr., 55: 375-422.

 

Schrire B.D., Lavin M., and Lewis G.P., 2005, Global distribution patterns of the Leguminosae: insights from recent phylogenies, In Friis, I; Balslev, H. Plant diversity and complexity patterns: local, regional and global dimensions, Biologiske Skrifter, 55, Viborg, Denmark: Special-Trykkeriet Viborg A/S, pp. 375-422.

 

Simon M.F., and Pennington R.T., 2012, Evidence for adaptation to fire regimes in the tropical savannas of the Brazilian Cerrado, Int. J.Pl. Sci., 173: 711-723.

https://doi.org/10.1086/665973

 

Simon M.F., Grether R., Queiroz L.P. de, Skema C., Pennington R.T., and Hughes C.E., 2009, Recent assembly of the Cerrado, a Neotropical plant diversity hotspot, by in situ evolution of adaptations to fire, Proc. Natl. Acad. Sci. U.S.A., 106: 20359-20364.

https://doi.org/10.1073/pnas.0903410106

 

Stirton C.H., and Zarucchi J.L., (eds.) 1989, Advances in legume biology. Monographs in Systematic Botany of the Missouri Botanical Garden 29. St. Louis: Missouri Botanical Garden Press.

 

Taubert P., 1891, Leguminosae, Pp. 70-396 in: Engler A., and Prantl K., (eds.), Die natürlichen Pflanzenfamilien, vol. 3(3). Leipzig: Engelmann.

 

The Legume Phylogeny Working Group (LPWG), 2017, A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny, Taxon, 66(1): 44-77.

 

Tucker S.C., 2003, Floral development in legumes, Pl. Physiol., 131: 911-926.

https://doi.org/10.1104/pp.102.017459

 

Wikström N., Savolainen V., and Chase M.W., 2001, Evolution of the angiosperms: calibrating the family tree, Proceedings of the Royal Society of London B: Biological Sciences, 268(1482): 2211-2220.

https://doi.org/10.1098/rspb.2001.1782

 

Wing S.L., Herrera F., and Jaramillo C., 2004, A Paleocene flora from the Cerrejon formation, Guajira Peninsula, northeastern Colombia, In International Organisation of Paleobotany, 7th Quadrennial Conference, Bariloche, Argentina Abstracts, pp. 146-147.

 

Wojciechowski M.F., 2003, Reconstructing the phylogeny of legumes (Leguminosae): an early 21st century perspective, Advances in legume systematics, pp. 5-35.

 

Wojciechowski M.F., 2005, Astragalus (Fabaceae): a molecular phylogenetic perspective. Brittonia, 57(4): 382-396.

https://doi.org/10.1663/0007-196X(2005)057[0382:AFAMPP]2.0.CO;2

 

Wojciechowski M.F., Mahn J., and Jones B., 2006, Fabaceae, legumes, The tree of life web project.

 

Wojciechowski M.F., Sanderson M.J., Baldwin B.G., and Donoghue M.J., 1993, Monophyly of aneuploid Astragalus: Evidence from nuclear ribosomal DNA internal transcribed spacer sequences, American Journal of Botany, 80(6): 711-722.

https://doi.org/10.1002/j.1537-2197.1993.tb15241.x

 

Yahara T., Javadi F., Onoda Y., Queiroz L.P.de, Faith D., Prado D.E., Akasaka M., Kadoya T., Ishihama F., Davies S., Slik J.W.F., Yi T., Ma K., Bin C., Darnaedi D., Pennington R.T., Tuda M., Shimada M., Ito M., Egan A.N., Buerki S., Raes N., Kajita T., Vatanparast M., Mimura M., Tachida H., Iwasa Y., Smith G.F., Victor J.E., and Nkonki T., 2013, Global legume diversity assessment: Concepts, key indicators, and strategies, Taxon 62: 249-266.

https://doi.org/10.12705/622.12

 

Yokota K., and Hayashi M., 2011, Function and evolution of nodulation genes in legumes, Cellular and molecular life sciences, 68(8): 1341-1351.

https://doi.org/10.1007/s00018-011-0651-4

 

    2.153
00035
豆科基因组学与遗传学
• 第 14 卷
阅览选项
. 全文 PDF
. 全文 HTML
读者评论
. 评论
作者的其他论文
.
黎建辉
.
张洁
.
俞诗莹
.
王浙茹
.
刘楚楚
相关论文
.
豆科
.
多样化
.
分类系统
.
LPWG
服务
. 发表评论